GEOMETRIC ANALYSIS OF A NONLINEAR BOUNDARY-VALUE PROBLEM FROM PHYSICAL OCEANOGRAPHY

被引:15
作者
DUNBAR, SR
机构
关键词
NONLINEAR BOUNDARY LAYER PROBLEM; WAZEWSKI THEOREM; LYAPUNOV FUNCTION; LASALLE INVARIANCE PRINCIPLE;
D O I
10.1137/0524028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A third-order nonlinear differential equation with two sets of boundary conditions is considered. These boundary value problems arise as boundary layer problems from a model of large scale ocean circulation. Using geometrical techniques from qualitative differential equations, such as Wazewski's theorem, invariant manifolds, and Lyapunov functions, the existence of solutions for each boundary value problem is given in a uniform way for all positive values of a parameter of the differential equation.
引用
收藏
页码:444 / 465
页数:22
相关论文
共 13 条
[2]  
[Anonymous], 1996, TABLES INTEGRALS SER
[4]  
DUNBAR SR, 1983, J MATH BIOL, V17, P11
[5]  
Gantmacher FR., 1964, THEORY MATRICES
[6]  
Hartman P., 1973, ORDINARY DIFFERENTIA
[7]   OSCILLATING SOLUTIONS OF THE FALKNER-SKAN EQUATION FOR POSITIVE-BETA [J].
HASTINGS, SP ;
TROY, WC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :123-144
[8]   EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR FITZHUGH-NAGUMO EQUATIONS [J].
HASTINGS, SP .
QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105) :123-134
[9]  
HOLMES P, 1982, STUD APPL MATH, V66, P121
[10]  
IERLEY GR, 1986, STUD APPL MATH, V75, P1