SWITCHING RECOGNITION OF 2 TRANSFER-RNA SYNTHETASES WITH AN AMINO-ACID SWAP IN A DESIGNED PEPTIDE

被引:41
作者
AULD, DS
SCHIMMEL, P
机构
[1] Department of Biology, Massachusetts Institute of Technology, Cambridge
关键词
D O I
10.1126/science.7701322
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The genetic code is based on specific interactions between transfer RNA (tRNA) synthetases and their cognate tRNAs. The anticodons for methionine and isoleucine tRNAs differ by a single nucleotide, and changing this nucleotide in an isoleucine tRNA is sufficient to change aminoacylation specificity to methionine. Results of combinatorial mutagenesis of an anticodon-binding-helix loop peptide were used to design a hybrid sequence composed of amino acid residues from methionyl- and isoleucyl-tRNA synthetases. When the hybrid sequence was transplanted into isoleucyl-tRNA synthetase, active enzyme was generated in vivo and in vitro. The transplanted peptide did not confer function to methionyl-tRNA synthetase, but the substitution of a single amino acid within the transplanted peptide conferred methionylation and prevented isoleucylation. Thus, the swap of a single amino acid in the transplanted peptide switches specificity between anticodons that differ by one nucleotide.
引用
收藏
页码:1994 / 1996
页数:3
相关论文
共 25 条