A DIFFERENTIAL GEOMETRIC APPROACH TOWARD ROBUST SIGNAL-DETECTION

被引:7
作者
THOMPSON, MW [1 ]
HALVERSON, DR [1 ]
机构
[1] TEXAS A&M UNIV SYST,DEPT ELECT ENGN,COLLEGE STN,TX 77843
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 1991年 / 328卷 / 04期
关键词
D O I
10.1016/0016-0032(91)90015-U
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A procedure for measuring the robustness of a signal detector by applying some techniques rooted in differential geometry is presented. This approach admits nonstationarity and, in some cases, dependent data in a manner which reflects the effects of essentially arbitrary perturbations in a distribution about a nominal. Numerous examples are provided of the computation of robustness for several detectors. It is shown how such a quantitative measure of robustness can be employed to design detectors which possess an optimized combination of performance and robustness subject to a linear cost criterion, thus admitting the judicious tradeoff of those two important quantities.
引用
收藏
页码:379 / 401
页数:23
相关论文
共 8 条
[1]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI DOI 10.5802/AIF.53
[2]   MINIMAX TESTS AND NEYMAN-PEARSON LEMMA FOR CAPACITIES [J].
HUBER, PJ ;
STRASSEN, V .
ANNALS OF STATISTICS, 1973, 1 (02) :251-263
[3]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[4]   A ROBUST VERSION OF THE PROBABILITY RATIO TEST [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (06) :1753-1758
[5]  
Huber PJ., 1981, ROBUST STATISTICS
[6]   ROBUST TECHNIQUES FOR SIGNAL-PROCESSING - A SURVEY [J].
KASSAM, SA ;
POOR, HV .
PROCEEDINGS OF THE IEEE, 1985, 73 (03) :433-481
[7]  
THOMPSON MW, 1988, 1988 P INT C ADV COM, P128
[8]  
THOMPSON MW, 1987, THESIS TEXAS A M U C