DE-NOVO AND INVERSE FOLDING PREDICTIONS OF PROTEIN-STRUCTURE AND DYNAMICS

被引:76
作者
GODZIK, A [1 ]
KOLINSKI, A [1 ]
SKOLNICK, J [1 ]
机构
[1] SCRIPPS RES INST, DEPT MOLEC BIOL, LA JOLLA, CA 92037 USA
关键词
INVERSE FOLDING; PROTEIN FOLDING PATHWAYS; TERTIARY STRUCTURE PREDICTION; LATTICE PROTEIN MODELS; MOLTEN GLOBULE INTERMEDIATES;
D O I
10.1007/BF02337559
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the last two years, the use of simplified models has facilitated major progress in the globular protein folding problem, viz., the prediction of the three-dimensional (3D) structure of a globular protein from its amino acid sequence. A number of groups have addressed the inverse folding problem where one examines the compatibility of a given sequence with a given (and already determined) structure. A comparison of extant inverse protein-folding algorithms is presented, and methodologies for identifying sequences likely to adopt identical folding topologies, even when they lack sequence homology, are described. Extension to produce structural templates or fingerprints from idealized structures is discussed, and for eight-membered beta-barrel proteins, it is shown that idealized fingerprints constructed from simple topology diagrams can correctly identify sequences having the appropriate topology. Furthermore, this inverse folding algorithm is generalized to predict elements of supersecondary structure including beta-hairpins, helical hairpins and alpha/beta/alpha fragments. Then, we describe a very high coordination number lattice model that can predict the 3D structure of a number of globular proteins de novo; i.e. using just the amino acid sequence. Applications to sequences designed by DeGrado and co-workers [Biophys. J., 61 (1992) A265] predict folding intermediates, native states and relative stabilities in accord with experiment. The methodology has also been applied to the four-helix bundle designed by Richardson and co-workers [Science, 249 (1990) 884] and a redesigned monomeric version of a naturally occurring four-helix dimer, rop. Based on comparison to the rop dimer, the simulations predict conformations with rms values of 3-4 angstrom from native. Furthermore, the de novo algorithms can assess the stability of the folds predicted from the inverse algorithm, while the inverse folding algorithms can assess the quality of the de novo models. Thus, the synergism of the de novo and inverse folding algorithm approaches provides a set of complementary tools that will facilitate further progress on the protein-folding problem.
引用
收藏
页码:397 / 438
页数:42
相关论文
共 128 条
[1]   NON-INTERACTING LOCAL-STRUCTURE MODEL OF FOLDING AND UNFOLDING TRANSITION IN GLOBULAR-PROTEINS .2. APPLICATION TO TWO-DIMENSIONAL LATTICE PROTEINS [J].
ABE, H ;
GO, N .
BIOPOLYMERS, 1981, 20 (05) :1013-1031
[2]  
Adman E.T., 1985, METALLOPROTEINS ME 1, P1
[3]   PROTEIN DATABASE SEARCHES FOR MULTIPLE ALIGNMENTS [J].
ALTSCHUL, SF ;
LIPMAN, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5509-5513
[6]   A STRATEGY FOR THE RAPID MULTIPLE ALIGNMENT OF PROTEIN SEQUENCES - CONFIDENCE LEVELS FROM TERTIARY STRUCTURE COMPARISONS [J].
BARTON, GJ ;
STERNBERG, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 198 (02) :327-337
[7]   DETERMINANTS OF A PROTEIN FOLD - UNIQUE FEATURES OF THE GLOBIN AMINO-ACID-SEQUENCES [J].
BASHFORD, D ;
CHOTHIA, C ;
LESK, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (01) :199-216
[8]  
BAUMGARTNER A, 1984, ANNU REV PHYS CHEM, V35, P419
[9]   PATTERNS OF DIVERGENCE IN HOMOLOGOUS PROTEINS AS INDICATORS OF SECONDARY AND TERTIARY STRUCTURE - A PREDICTION OF THE STRUCTURE OF THE CATALYTIC DOMAIN OF PROTEIN-KINASES [J].
BENNER, SA ;
GERLOFF, D .
ADVANCES IN ENZYME REGULATION, 1991, 31 :121-181
[10]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542