FAT ONE-DIMENSIONAL REPRESENTATIVES OF PSEUDO-ANOSOV ISOTOPY CLASSES WITH MINIMAL PERIODIC ORBIT STRUCTURE

被引:10
作者
HALL, T
机构
[1] Dept. of Appl. Math. and Theor. Phys., Cambridge Univ.
关键词
D O I
10.1088/0951-7715/7/2/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider isotopy classes of homeomorphisms of the disc relative to a periodic orbit. Representatives of such isotopy classes are constructed which yield piecewise linear maps of the interval on identification along stable leaves: this means that their periodic orbit structures are easily determined. In the case where the isotopy class is of pseudo-Anosov type, necessary and sufficient conditions are given for this periodic orbit structure to be minimal in the isotopy class.
引用
收藏
页码:367 / 384
页数:18
相关论文
共 19 条
[2]  
BESTVINA M, 1991, UNPUB TOPOLOGY
[3]  
BOYLAND P, 1989, INFORMAL LECTURE NOT
[4]  
BOYLAND P, 1984, UNPUB BRAID TYPES TO
[5]  
BOYLAND P, 1933, ISOTOPY STABILITY DY
[6]  
CASSON AJ, 1988, AUTOMORPHISMS SURFAC
[7]   CURVES ON 2-MANIFOLDS AND ISOTOPIES [J].
EPSTEIN, DBA .
ACTA MATHEMATICA UPPSALA, 1966, 115 (1-2) :83-&
[8]  
Fahti A., 1979, ASTERISQUE, V66-67
[9]  
FRANKS J, 1992, CYCLES DISK HOMEOMOR
[10]   KNOTS, LINKS, AND SYMBOLIC DYNAMICS [J].
FRANKS, JM .
ANNALS OF MATHEMATICS, 1981, 113 (03) :529-552