THE EXPONENTIALS IN THE SPAN OF THE MULTIINTEGER TRANSLATES OF A COMPACTLY SUPPORTED FUNCTION - QUASIINTERPOLATION AND APPROXIMATION ORDER
被引:19
作者:
DEBOOR, C
论文数: 0引用数: 0
h-index: 0
机构:Center for Mathematical Sciences, Computer Sciences Department, University of Wisconsin-Madison, Madison, WI
DEBOOR, C
RON, A
论文数: 0引用数: 0
h-index: 0
机构:Center for Mathematical Sciences, Computer Sciences Department, University of Wisconsin-Madison, Madison, WI
RON, A
机构:
[1] Center for Mathematical Sciences, Computer Sciences Department, University of Wisconsin-Madison, Madison, WI
来源:
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
|
1992年
/
45卷
基金:
美国国家科学基金会;
关键词:
D O I:
10.1112/jlms/s2-45.3.519
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Given a compactly supported function phi:R(s) --> C and the space S spanned by its integer translates, we study quasiinterpolants which reproduce (entirely or in part) the space H of all exponentials in S. We do this by imitating the action on H of the associated semi-discrete convolution operator phi*' by a convolution lambda*, lambda being a compactly supported distribution, and inverting lambda*\H by another local convolution operator mu*. This leads to a unified theory for quasiinterpolants on regular grids, showing that each specific construction now in the literature corresponds to a special choice of lambda and mu. The natural choice lambda = phi is singled out, and the interrelation between phi*' and phi* is analysed in detail. We use these observations in the conversion of the approximation order at zero of an exponential space H into approximation rates from any space which contains H and is spanned by the hZ(s)-translates of a single compactly supported function phi. The bounds obtained are attractive in the sense that they rely only on H and the basic quantities diam supp phi and h(s)\\phi\\infinity/phi(0).
机构:
TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAELTEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
BENARTZI, A
RON, A
论文数: 0引用数: 0
h-index: 0
机构:
TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAELTEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
机构:
TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAELTEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
BENARTZI, A
RON, A
论文数: 0引用数: 0
h-index: 0
机构:
TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAELTEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL