LOWER BOUNDS IN PATTERN-RECOGNITION AND LEARNING

被引:27
作者
DEVROYE, L [1 ]
LUGOSI, G [1 ]
机构
[1] TECH UNIV BUDAPEST,DEPT MATH,H-1521 BUDAPEST,HUNGARY
关键词
LEARNING; NONPARAMETRIC ESTIMATION; VAPNIK-CHERVONENKIS INEQUALITY; LOWER BOUNDS; PATTERN RECOGNITION;
D O I
10.1016/0031-3203(94)00141-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lower bounds are derived for the performance of any pattern recognition algorithm, which, using training data, selects a discrimination rule from a certain class of rules. The bounds involve the Vapnik-Chervonenkis dimension of the class, and L, the minimal error probability within the class. We provide lower bounds when L = 0(the usual assumption in Valiant's theory of learning) and L > 0.
引用
收藏
页码:1011 / 1018
页数:8
相关论文
共 19 条
[1]   PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1984, 12 (04) :1041-1067
[2]  
ASSOUAD P, 1983, CR ACAD SCI I-MATH, V296, P1021
[3]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[4]   ON ESTIMATING A DENSITY USING HELLINGER DISTANCE AND SOME OTHER STRANGE FACTS [J].
BIRGE, L .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (02) :271-291
[5]  
BLUMER A, 1989, J ACM, V36
[8]  
Devroye L., 1987, COURSE DENSITY ESTIM
[9]  
DEVROYE L, 1976, 183 U TEXAS EL RES C
[10]   A GENERAL LOWER BOUND ON THE NUMBER OF EXAMPLES NEEDED FOR LEARNING [J].
EHRENFEUCHT, A ;
HAUSSLER, D ;
KEARNS, M ;
VALIANT, L .
INFORMATION AND COMPUTATION, 1989, 82 (03) :247-261