DARK SPATIAL SOLITONS OF THE TM-TYPE

被引:6
作者
CHEN, YJ
机构
[1] Optical Sciences Centre, Australian National University, Canberra
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 11期
关键词
D O I
10.1103/PhysRevA.44.7524
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The existence of dark spatial solitons of the TM type is examined. This type of two-dimensional solitary wave is found to exist in the self-defocusing nonlinear medium of a Kerr-law type in the range of the wave effective index n(eff) from 0.82n0 to n0 of the linear refractive index of the medium. This contrasts with dark spatial solitons of the TE type, which exist in the range of n(eff) from 0 to n0. The longitudinal component is shown to play a key role leading to this distinction. The comparison between TM and TE solitons is also made on other aspects. For example, the field profile of the TM soliton is shown to vary with the wave effective index, whereas that of the TE soliton is characterized by the hyperbolic tangent function, independent of n(eff).
引用
收藏
页码:7524 / 7529
页数:6
相关论文
共 17 条
[1]  
ABAKAROV DI, 1967, ZH EKSP TEOR FIZ, V25, P303
[2]   OBSERVATION OF SPATIAL OPTICAL SOLITONS IN A NONLINEAR GLASS WAVE-GUIDE [J].
AITCHISON, JS ;
WEINER, AM ;
SILBERBERG, Y ;
OLIVER, MK ;
JACKEL, JL ;
LEAIRD, DE ;
VOGEL, EM ;
SMITH, PWE .
OPTICS LETTERS, 1990, 15 (09) :471-473
[3]   OBSERVATION OF FUNDAMENTAL DARK SPATIAL SOLITONS IN SEMICONDUCTORS USING PICOSECOND PULSES [J].
ALLAN, GR ;
SKINNER, SR ;
ANDERSEN, DR ;
SMIRL, AL .
OPTICS LETTERS, 1991, 16 (03) :156-158
[4]   DIRECT MEASUREMENT OF THE TRANSVERSE VELOCITY OF DARK SPATIAL SOLITONS [J].
ANDERSEN, DR ;
HOOTON, DE ;
SWARTZLANDER, GA ;
KAPLAN, AE .
OPTICS LETTERS, 1990, 15 (14) :783-785
[5]   SOLITON PROPAGATION AND SELF-CONFINEMENT OF LASER-BEAMS BY KERR OPTICAL NON-LINEARITY [J].
BARTHELEMY, A ;
MANEUF, S ;
FROEHLY, C .
OPTICS COMMUNICATIONS, 1985, 55 (03) :201-206
[6]   TM-TYPE SELF-GUIDED BEAMS WITH CIRCULAR CROSS-SECTION [J].
CHEN, Y ;
SNYDER, AW .
ELECTRONICS LETTERS, 1991, 27 (07) :565-566
[7]   VECTOR SPATIAL SOLITON - TRAPPED TM LIGHT PATTERN IN PLANAR GEOMETRY [J].
CHEN, Y .
ELECTRONICS LETTERS, 1991, 27 (04) :380-382
[8]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[9]   HIGHER ORDER TRAPPED LIGHT BEAM SOLUTIONS - (ANALOG COMPUTER SOLUTION T) [J].
HAUS, HA .
APPLIED PHYSICS LETTERS, 1966, 8 (05) :128-&
[10]  
MANEUF S, 1988, OPT COMMUN, V66, P325, DOI 10.1016/0030-4018(88)90424-5