LESION-INDUCED TRANSIENT SUPPRESSION OF INHIBITORY FUNCTION IN RAT NEOCORTEX IN-VITRO

被引:81
作者
MITTMANN, T
LUHMANN, HJ
SCHMIDTKASTNER, R
EYSEL, UT
WEIGEL, H
HEINEMANN, U
机构
[1] UNIV COLOGNE,CTR PHYSIOL & PATHOPHYSIOL,INST NEUROPHYSIOL,D-50931 COLOGNE,GERMANY
[2] RUHR UNIV BOCHUM,FAC MED,INST PHYSIOL,DEPT NEUROPHYSIOL,D-44780 BOCHUM,GERMANY
关键词
D O I
10.1016/0306-4522(94)90270-4
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The structural and functional consequences of a local thermolesion were examined in rat neocortex with electrophysiological in votro techniques and immunocytochemistry. Age-matched untreated and sham-operated animals served as controls and were analysed in the same way. The lesions consisted of a core of coagulated tissue 2-3 mm in diameter and reached ventrally into the deep cortical layers. After two days reactive astrocytes and after nine days a dense gliosis were observed in the immediate vicinity. Modifications in the intrinsic membrane characteristics and the synaptic network properties were investigated with intra- and extracellular recording techniques after survival times of one to eight days. Neurons recorded in the surrounding of lesions in neocortical slices revealed a significantly more depolarized resting membrane potential and a higher neuronal input resistance. In comparison to cells in control slices, maximal discharge rates to injection of depolarizing current pulses of neurons close to a focal lesion were not significantly altered and intrinsic burst firing was never observed. However, between postlesion days 1 and 5, neurons in the surroundings of lesions showed a transient increase in synaptic excitability. This hyperactivity was most clearly pronounced at a distance of 2-3 mm from the centre of the lesion (i.e. about 1-1.5 mm away from the lesion border) and characterized by long-duration field potential responses and multiphasic long-lasting er;citatory postsynaptic potentials to orthodromic stimulation of the afferent input. This lesion-induced hyperexcitability was associated with a significant reduction in the peak conductance of the Cl--dependent fast inhibitory postsynaptic potential and the K+-dependent long-latency inhibitory postsynaptic potential. suggesting that the intracortical GABAergic system was functionally impaired. The decrease in synaptic inhibition was associated with prolonged N-methyl-D-aspartate receptor-mediated activity, which could be reversibly blocked by D-amino-phosphonovaleric acid. In addition, neurons recorded in the vicinity of the lesion responded to an orthodromic synaptic stimulus with a long-lasting burst. The lesion-induced disturbance in the balance between the excitatory and inhibitory system may not only have profound influences on the mechanisms of intracortical information processing, but may also lead to the expression of epileptiform activity and long-term functional deficits.
引用
收藏
页码:891 / 906
页数:16
相关论文
共 68 条
[1]   LONG-TERM POTENTIATION AND NMDA RECEPTORS IN RAT VISUAL-CORTEX [J].
ARTOLA, A ;
SINGER, W .
NATURE, 1987, 330 (6149) :649-652
[2]   RELEASE OF GLUTAMATE AND OF FREE FATTY-ACIDS IN VASOGENIC BRAIN EDEMA [J].
BAETHMANN, A ;
MAIERHAUFF, K ;
SCHURER, L ;
LANGE, M ;
GUGGENBICHLER, C ;
VOGT, W ;
JACOB, K ;
KEMPSKI, O .
JOURNAL OF NEUROSURGERY, 1989, 70 (04) :578-591
[3]   HORIZONTAL SPREAD OF SYNCHRONIZED ACTIVITY IN NEOCORTEX AND ITS CONTROL BY GABA-MEDIATED INHIBITION [J].
CHAGNACAMITAI, Y ;
CONNORS, BW .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 61 (04) :747-758
[4]   BURST GENERATING AND REGULAR SPIKING LAYER-5 PYRAMIDAL NEURONS OF RAT NEOCORTEX HAVE DIFFERENT MORPHOLOGICAL FEATURES [J].
CHAGNACAMITAL, Y ;
LUHMANN, HJ ;
PRINCE, DA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 296 (04) :598-613
[5]   GLUTAMATE NEUROTOXICITY AND DISEASES OF THE NERVOUS-SYSTEM [J].
CHOI, DW .
NEURON, 1988, 1 (08) :623-634
[6]  
CHOI DW, 1990, ANNU REV NEUROSCI, V13, P171, DOI 10.1146/annurev.neuro.13.1.171
[7]   ELECTRO-PHYSIOLOGICAL PROPERTIES OF NEOCORTICAL NEURONS INVITRO [J].
CONNORS, BW ;
GUTNICK, MJ ;
PRINCE, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (06) :1302-1320
[8]   2 INHIBITORY POSTSYNAPTIC POTENTIALS, AND GABAA AND GABAB RECEPTOR-MEDIATED RESPONSES IN NEOCORTEX OF RAT AND CAT [J].
CONNORS, BW ;
MALENKA, RC ;
SILVA, LR .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 406 :443-468
[9]   INITIATION OF SYNCHRONIZED NEURONAL BURSTING IN NEOCORTEX [J].
CONNORS, BW .
NATURE, 1984, 310 (5979) :685-687
[10]   LONG-TERM LOSS OF PAIRED PULSE INHIBITION IN THE KAINIC ACID-LESIONED HIPPOCAMPUS OF THE RAT [J].
CORNISH, SM ;
WHEAL, HV .
NEUROSCIENCE, 1989, 28 (03) :563-571