SPHERICAL SPLINE INTERPOLATION - BASIC THEORY AND COMPUTATIONAL ASPECTS

被引:45
作者
FREEDEN, W [1 ]
机构
[1] RHEIN WESTFAL TH AACHEN,INST REINE & ANGEW MATH,D-5100 AACHEN,FED REP GER
关键词
D O I
10.1016/0377-0427(84)90011-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the paper is to adapt to the spherical case the basic theory and the computational method known from surface spline interpolation in Euclidean spaces. Spline functions are defined on the sphere. The solution process is made simple and efficient for numerical computation. In addition, the convergence of the solution obtained by spherical spline interpolation is developed using estimates for Legendre polynomials.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 15 条
[1]  
Davis PJ, 1963, INTERPOLATION APPROX
[3]   A CLASS OF MULTIDIMENSIONAL PERIODIC SPLINES [J].
FREEDEN, W ;
REUTER, R .
MANUSCRIPTA MATHEMATICA, 1981, 35 (03) :371-386
[4]  
FREEDEN W, 1982, B GEOD SCI AFF, V1, P105
[5]  
Freeden W., 1981, MATH METHOD APPL SCI, V3, P551
[6]  
FREEDEN W, 1983, METHODEN VERFAHREN M, V27, P73
[7]  
Golomb M., 1968, J APPROXIMATION THEO, V1, P26, DOI 10.1016/0021-9045(68)90055-5
[8]  
HLAWKA E, 1982, J REINE ANGEW MATH, V330, P1
[9]  
Meinguet J., 1979, J APPL MATH PHYS, V30, P292
[10]  
MEINGUET J, 1979, NUMERISCHE INTEGRATI, V57, P211