FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS

被引:3122
作者
HALSEY, TC
JENSEN, MH
KADANOFF, LP
PROCACCIA, I
SHRAIMAN, BI
机构
[1] UNIV CHICAGO,ENRICO FERMI INST,CHICAGO,IL 60637
[2] UNIV CHICAGO,DEPT CHEM,CHICAGO,IL 60637
来源
PHYSICAL REVIEW A | 1986年 / 33卷 / 02期
关键词
D O I
10.1103/PhysRevA.33.1141
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:1141 / 1151
页数:11
相关论文
共 34 条
[1]   EVOLUTION AND BREAKDOWN OF A VORTEX STREET IN 2 DIMENSIONS [J].
AREF, H ;
SIGGIA, ED .
JOURNAL OF FLUID MECHANICS, 1981, 109 (AUG) :435-463
[2]  
BOWEN R, 1975, LECTURE NOTES MATH, V470
[3]   COMPUTING THE KOLMOGOROV-ENTROPY FROM TIME SIGNALS OF DISSIPATIVE AND CONSERVATIVE DYNAMICAL-SYSTEMS [J].
COHEN, A ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1985, 31 (03) :1872-1882
[4]   RENORMALIZATION, UNSTABLE MANIFOLDS, AND THE FRACTAL STRUCTURE OF MODE-LOCKING [J].
CVITANOVIC, P ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1985, 55 (04) :343-346
[5]  
CVITANOVIC P, UNPUB
[6]  
Cvitanovic P., 1984, UNIVERSALITY CHAOS
[7]   ANOMALOUS VOLTAGE DISTRIBUTION OF RANDOM RESISTOR NETWORKS AND A NEW MODEL FOR THE BACKBONE AT THE PERCOLATION-THRESHOLD [J].
DE ARCANGELIS, L ;
REDNER, S ;
CONIGLIO, A .
PHYSICAL REVIEW B, 1985, 31 (07) :4725-4727
[8]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[9]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[10]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706