THE MAJOR DIMERIZATION DETERMINANTS OF THE NITROGEN REGULATORY PROTEIN NTRC FROM ENTERIC BACTERIA LIE IN ITS CARBOXY-TERMINAL DOMAIN

被引:61
作者
KLOSE, KE
NORTH, AK
STEDMAN, KM
KUSTU, S
机构
[1] UNIV CALIF BERKELEY,DEPT MOLEC & CELL BIOL,BERKELEY,CA 94720
[2] UNIV CALIF BERKELEY,DEPT PLANT BIOL,BERKELEY,CA 94720
关键词
PROTEIN PURIFICATION; DNA-BINDING; PHOSPHORYLATION; FIS PROTEIN; TRANSCRIPTIONAL ACTIVATION;
D O I
10.1006/jmbi.1994.1492
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NTRC protein (nitrogen regulatory protein C) of enteric bacteria is an enhancer-binding protein that activates transcription by the sigma(54)-holoenzyme form of RNA polymerase. NTRC is a homodimeric protein that binds to a dyad-symmetrical site in DNA. To activate transcription NTRC must be phosphorylated and must form an appropriate oligomeric species at an enhancer. In order to study subunit exchange between NTRC dimers, we constructed a fusion of the maltose-binding protein (MBP) to the amino-terminal end of NTRC (MBP-NTRC) and visualized the formation of heterodimers between MBP-NTRC and wild-type NTRC by a gel-mobility shift assay for DNA-binding. When MBP-NTRC is mixed with wild-type NTRC at 37 degrees C, subunit exchange occurs rapidly. The apparent half-life for dissociation of homodimers of NTRC is two to three minutes at 37 degrees C and is not changed by phosphorylation. The isolated carboxy-terminal domain of NTRC (91 amino acid residues) forms heterodimers with both wild-type NTRC and MBP-NTRC, indicating that the C-terminal domain is sufficient for dimerization. The apparent rate of dissociation of homodimers of the C-terminal domain is essentially the same as that of full-length NTRC, indicating that the major dimerization determinants of the protein lie in its C-terminal domain. Congruent with this, a truncated form of NTRC from which the last 58 amino acid residues were removed is a monomer in solution. Moreover, truncated forms of NTRC from which the last 16 or 26 amino acid residues were removed are predominantly monomeric in solution, as is a mutant form with the amino acid substitution A410E in its C-terminal domain. Monomerization of the above mutant; forms of NTRC can be rationalized on the basis of homology between the C-terminal region of NTRC and a 50 amino acid residue region of the factor for inversion stimulation (FIS) protein.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 42 条
[1]   MODULATION OF THE DIMERIZATION OF A TRANSCRIPTIONAL ANTITERMINATOR PROTEIN BY PHOSPHORYLATION [J].
AMSTERCHODER, O ;
WRIGHT, A .
SCIENCE, 1992, 257 (5075) :1395-1398
[2]  
BERGER DK, 1992, CURRENT PLANT SCI BI, V17, P435
[3]  
BERGER DK, 1993, P NATL ACAD SCI USA, V91, P103
[4]  
Cantor CR, 1980, BIOPHYSICAL CHEM
[5]   THE EFFECT ON THE FUNCTION OF THE TRANSCRIPTIONAL ACTIVATOR NTRC FROM KLEBSIELLA-PNEUMONIAE OF MUTATIONS IN THE DNA-RECOGNITION HELIX [J].
CONTRERAS, A ;
DRUMMOND, M .
NUCLEIC ACIDS RESEARCH, 1988, 16 (09) :4025-4039
[6]   BINDING OF THE IS903 TRANSPOSASE TO ITS INVERTED REPEAT INVITRO [J].
DERBYSHIRE, KM ;
GRINDLEY, NDF .
EMBO JOURNAL, 1992, 11 (09) :3449-3455
[7]   VECTORS THAT FACILITATE THE EXPRESSION AND PURIFICATION OF FOREIGN PEPTIDES IN ESCHERICHIA-COLI BY FUSION TO MALTOSE-BINDING PROTEIN [J].
DIGUAN, C ;
LI, P ;
RIGGS, PD ;
INOUYE, H .
GENE, 1988, 67 (01) :21-30
[8]   SEQUENCE AND DOMAIN RELATIONSHIPS OF NTRC AND NIFA FROM KLEBSIELLA-PNEUMONIAE - HOMOLOGIES TO OTHER REGULATORY PROTEINS [J].
DRUMMOND, M ;
WHITTY, P ;
WOOTTON, J .
EMBO JOURNAL, 1986, 5 (02) :441-447
[9]   THE FIS PROTEIN - ITS NOT JUST FOR DNA INVERSION ANYMORE [J].
FINKEL, SE ;
JOHNSON, RC .
MOLECULAR MICROBIOLOGY, 1992, 6 (22) :3257-3265
[10]   STUDIES ON TRANSFORMATION OF ESCHERICHIA-COLI WITH PLASMIDS [J].
HANAHAN, D .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :557-580