QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES

被引:188
作者
BRZEZINSKI, T
MAJID, S
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge
关键词
D O I
10.1007/BF02096884
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles with quantum differential structure coming from the 3D calculus of Woronowicz on SU(q)(2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fibre, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces).
引用
收藏
页码:591 / 638
页数:48
相关论文
共 28 条
[1]  
BARR M, 1984, TOPOSES TRIPLES THEO
[2]  
CONNES A, 1980, CR ACAD SCI A MATH, V290, P599
[3]  
CONNES A, 1991, METRIC ASPECT NONCOM
[4]  
CONNES A, 1990, IHESP9023 PREPR
[5]  
CONNES A, 1986, IHES62 TECHN REP
[6]  
Connes A., 1986, PITNAM RES NOTES MAT, V123, P52
[7]   REMARKS ON THE DIFFERENTIAL ENVELOPES OF ASSOCIATIVE ALGEBRAS [J].
COQUEREAUX, R ;
KASTLER, D .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 137 (02) :245-263
[8]  
DRINFELD VG, 1987, 1986 P INT C MATH BE, P798
[9]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND NEW MODELS OF GAUGE-THEORY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :323-330
[10]  
EGUSQUIZA IL, 1992, DAMTP9218 PREPR