DEFINING CHAOS

被引:25
作者
BATTERMAN, RW
机构
关键词
D O I
10.1086/289717
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
This paper considers definitions of classical dynamical chaos that focus primarily on notions of predictability and computability, sometimes called algorithmic complexity definitions of chaos. I argue that accounts of this type are seriously flawed. They focus on a likely consequence of chaos, namely, randomness in behavior which gets characterized in terms of the unpredictability or uncomputability of final given initial states. In doing so, however, they can overlook the definitive feature of dynamical chaos-the fact that the underlying motion generating the behavior exhibits extreme trajectory instability. I formulate a simple criterion of adequacy for any definition of chaos and show how such accounts fail to satisfy it.
引用
收藏
页码:43 / 66
页数:24
相关论文
共 18 条
[1]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[2]  
[Anonymous], 1998, ORDINARY DIFFERENTIA
[3]  
[Anonymous], 1986, PRIMER DETERMINISM
[4]  
Arnold V., 1968, ERGODIC PROBLEMS CLA, P6
[5]  
Arrowsmith D.K., 1990, INTRO DYNAMICAL SYST
[6]  
BERRY MV, 1983, CHAOTIC BEHAVIOR DET, P171
[7]  
Brudno A. A., 1978, RUSSIAN MATH SURVEYS, V33, P197, DOI [10.1070/RM1978v033n01ABEH002243, 10.1070/rm1978v033n01abeh0022432-s2.0-77951203081, DOI 10.1070/RM1978V033N01ABEH0022432-S2.0-77951203081]
[8]  
Fine T. L., 1973, THEORIES PROBABILITY
[9]   HOW RANDOM IS A COIN TOSS [J].
FORD, J .
PHYSICS TODAY, 1983, 36 (04) :40-47
[10]  
FORD J, 1989, NEW PHYSICS, P348