BAYESIAN NEURAL NETWORKS AND DENSITY NETWORKS

被引:101
作者
MACKAY, DJC
机构
[1] University of Cambridge, Cavendish Laboratory, Cambridge, CB3 0HE, Madingley Road
关键词
D O I
10.1016/0168-9002(94)00931-7
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper reviews the Bayesian approach to learning in neural networks, then introduces a new adaptive model, the density network. This is a neural network for which target outputs are provided, but the inputs are unspecified. When a probability distribution is placed on the unknown inputs, a latent variable model is defined that is capable of discovering the underlying dimensionality of a data set. A Bayesian learning algorithm for these networks is derived and demonstrated.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 18 条
[1]  
EDDY SR, 1994, IN PRESS RNA SEQUENC
[2]  
Everitt BS., 1984, INTRO LATENT VARIABL
[3]  
HINTON GE, 1994, ADV NEURAL INFORMATI
[4]  
HINTON GE, 1986, PARALLEL DISTRIBUTED, P282
[5]   HIDDEN MARKOV-MODELS IN COMPUTATIONAL BIOLOGY - APPLICATIONS TO PROTEIN MODELING [J].
KROGH, A ;
BROWN, M ;
MIAN, IS ;
SJOLANDER, K ;
HAUSSLER, D .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (05) :1501-1531
[6]  
MacKay David J. C., 1994, P TECHN REP PREP CAM
[7]   A PRACTICAL BAYESIAN FRAMEWORK FOR BACKPROPAGATION NETWORKS [J].
MACKAY, DJC .
NEURAL COMPUTATION, 1992, 4 (03) :448-472
[8]  
MACKAY DJC, 1992, NEURAL COMPUT, V4, P698
[9]  
MACKAY DJC, 1994, MODELS NEURAL NETWOR, V3, pCH6
[10]  
MACKAY DJC, 1994, MAXIMUM ENTROPY BAYE