TEXTURED IMAGE SEGMENTATION BY CONTEXT ENHANCED CLUSTERING

被引:23
作者
HU, Y
DENNIS, TJ
机构
[1] Univ of Tulsa, Tulsa
来源
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING | 1994年 / 141卷 / 06期
关键词
IMAGE SEGMENTATION; CLUSTERING;
D O I
10.1049/ip-vis:19941548
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An unsupervised textured image segmentation technique based on multidimensional feature vector clustering is described, where the features are the parameters of an autoregressive model. The benefits of incorporating spatial contextual information are demonstrated on both true cluster number estimation and actual image segmentation. A simple within-cluster distance is used for cluster validity analysis, where feature vectors are modified through local spatial dependency. This greatly reduces the dispersion in the raw feature data fed to the clustering process, and improves the true cluster number estimation. At the segmentation stage, three schemes incorporating contextual information at feature vector and label levels are proposed to enhance the segmentation accuracy. One is a development of a technique due to Mardia and Hainsworth (1988). The proposed approaches are tested on a four-class textured image.
引用
收藏
页码:413 / 421
页数:9
相关论文
共 26 条
[1]  
[Anonymous], HDB PATTERN RECOGNIT
[2]  
[Anonymous], 1981, PATTERN RECOGN
[3]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[4]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[5]   MULTIPLE RESOLUTION SEGMENTATION OF TEXTURED IMAGES [J].
BOUMAN, C ;
LIU, BD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (02) :99-113
[6]  
Brodatz P., 1966, TEXTURES PHOTOGRAPHI
[7]   CLASSIFICATION OF TEXTURES USING GAUSSIAN MARKOV RANDOM-FIELDS [J].
CHELLAPPA, R ;
CHATTERJEE, S .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (04) :959-963
[8]  
CROSS GR, IEEE T PAMI, V5, P25
[9]  
EVERITT B, 1974, CLUSTER ANAL, P40
[10]   BOUNDARY DETECTION BY CONSTRAINED OPTIMIZATION [J].
GEMAN, D ;
GEMAN, S ;
GRAFFIGNE, C ;
DONG, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :609-628