EXPOSING CONSTRAINTS

被引:47
作者
BURKE, JV [1 ]
MORE, JJ [1 ]
机构
[1] ARGONNE NATL LAB,DIV MATH & COMP SCI,ARGONNE,IL 60439
关键词
NONDEGENERACY; STRICT COMPLEMENTARITY; PROJECTED GRADIENT; ACTIVE CONSTRAINTS; LINEARLY CONSTRAINED PROBLEMS;
D O I
10.1137/0804032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The development of algorithms and software for the solution of large-scale optimization problems has been the main motivation behind the research on the identification properties of optimization algorithms. The aim of an identification result for a linearly constrained problem is to show that if the sequence generated by an optimization algorithm converges to a stationary point, then there is a nontrivial face F of the feasible set such that after a finite number of iterations, the iterates enter and remain in the face F. This paper develops the identification properties of linearly constrained optimization algorithms without any nondegeneracy or linear independence assumptions. The main result shows that the projected gradient converges to zero if and only if the iterates enter and remain in the face exposed by the negative gradient. This result generalizes results of Burke and More obtained for nondegenerate cases.
引用
收藏
页码:573 / 595
页数:23
相关论文
共 23 条
[1]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[3]   CONVERGENCE PROPERTIES OF TRUST REGION METHODS FOR LINEAR AND CONVEX CONSTRAINTS [J].
BURKE, JV ;
MORE, JJ ;
TORALDO, G .
MATHEMATICAL PROGRAMMING, 1990, 47 (03) :305-336
[4]  
CONN AR, 1988, MATH COMPUT, V50, P399, DOI 10.1090/S0025-5718-1988-0929544-3
[5]   GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :433-460
[8]   2-METRIC PROJECTION METHODS FOR CONSTRAINED OPTIMIZATION [J].
GAFNI, EM ;
BERTSEKAS, DP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (06) :936-964
[9]  
GAFNI EM, 1982, LIDSP1201 MIT LAB IN
[10]  
GAY DM, 1984, LECT NOTES MATH, V1066, P72