RNA-BINDING BY THE TAT AND REV PROTEINS OF HIV-1

被引:35
作者
KARN, J
DINGWALL, C
FINCH, JT
HEAPHY, S
GAIT, MJ
机构
[1] Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, Hills Road
关键词
RNA BINDING PROTEINS; TRANSACTIVATION; FILAMENT FORMATION; RNA SPLICING;
D O I
10.1016/0300-9084(91)90068-C
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
HIV-1 tat protein binds specifically to HIV-1 TAR RNA. A Scatchard analysis of tat binding has shown that the purified protein forms a one-to-one complex with HIV-1 TAR RNA with a dissociation constant of K(d) = 12 nM. Tat binding in vitro is dependent upon the presence of 3 non-base paired U residues which produce a 'bulge' in the TAR RNA stem-loop structure. Deletion of the uridine residues in the bulge or substitution with guanine residues produced RNAs with a 6 to 8-fold lower affinity than wild-type TAR. By contrast, mutations that alter the sequence of the 6 nucleotide-long loop at the tip of TAR RNA structure, and mutations which alter the sequence of the stem whilst preserving Watson-Crick base pairing, do not affect tat binding significantly. There is a direct correlation between the ability of tat to bind to TAR RNA and to activate HIV transcription. Viral LTRs encoding TAR sequences known to bind tat weakly, are not stimulated efficiently by tat in vivo. HIV-1 regulator of virion expression (rev) protein binds specifically to RNA transcripts containing the 223 nucleotide-long RRE sequence with an apparent dissociation constant of 1-3 nM. The minimum binding site for rev is a 'bubble' containing 2 G residues on one side and the sequence AGU on the other. Rev is able to bind efficiently to this restricted site in the context of the RRE sequence as well as in the context of a stable RNA duplex with a sequence unrelated to that found in the RRE. After binding of a rev protein to the high affinity site on the RRE, additional protein molecules can co-assemble along the length of the mRNA precursors carrying RRE sequences by virtue of protein-protein and low affinity protein-RNA interactions to form long filamentous structures which may be detected by electron microscopy.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 68 条
[1]   TRANS-ACTIVATOR GENE OF HUMAN T-LYMPHOTROPIC VIRUS TYPE-III (HTLV-III) [J].
ARYA, SK ;
GUO, C ;
JOSEPHS, SF ;
WONGSTAAL, F .
SCIENCE, 1985, 229 (4708) :69-73
[2]   AN ANTITERMINATION PROTEIN ENGAGES THE ELONGATING TRANSCRIPTION APPARATUS AT A PROMOTER PROXIMAL RECOGNITION SITE [J].
BARIK, S ;
GHOSH, B ;
WHALEN, W ;
LAZINSKI, D ;
DAS, A .
CELL, 1987, 50 (06) :885-899
[3]   TAT TRANS-ACTIVATES THE HUMAN IMMUNODEFICIENCY VIRUS THROUGH A NASCENT RNA TARGET [J].
BERKHOUT, B ;
SILVERMAN, RH ;
JEANG, KT .
CELL, 1989, 59 (02) :273-282
[4]   TAR-INDEPENDENT ACTIVATION OF THE HIV-1-LTR - EVIDENCE THAT TAT REQUIRES SPECIFIC REGIONS OF THE PROMOTER [J].
BERKHOUT, B ;
GATIGNOL, A ;
RABSON, AB ;
JEANG, KT .
CELL, 1990, 62 (04) :757-767
[5]   EFFICIENT TRANSACTIVATION BY THE HIV-2 TAT PROTEIN REQUIRES A DUPLICATED TAR RNA STRUCTURE [J].
BERKHOUT, B ;
GATIGNOL, A ;
SILVER, J ;
JEANG, KT .
NUCLEIC ACIDS RESEARCH, 1990, 18 (07) :1839-1846
[7]   SEQUENCE-SPECIFIC INTERACTION OF R17-COAT PROTEIN WITH ITS RIBONUCLEIC-ACID BINDING-SITE [J].
CAREY, J ;
CAMERON, V ;
DEHASETH, PL ;
UHLENBECK, OC .
BIOCHEMISTRY, 1983, 22 (11) :2601-2610
[8]   REGULATION BY HIV REV DEPENDS UPON RECOGNITION OF SPLICE SITES [J].
CHANG, DD ;
SHARP, PA .
CELL, 1989, 59 (05) :789-795
[9]   IDENTIFICATION OF SEQUENCES IMPORTANT IN THE NUCLEOLAR LOCALIZATION OF HUMAN IMMUNODEFICIENCY VIRUS REV - RELEVANCE OF NUCLEOLAR LOCALIZATION TO FUNCTION [J].
COCHRANE, AW ;
PERKINS, A ;
ROSEN, CA .
JOURNAL OF VIROLOGY, 1990, 64 (02) :881-885
[10]   SPECIFIC INTERACTION OF THE HUMAN-IMMUNODEFICIENCY-VIRUS REV PROTEIN WITH A STRUCTURED REGION IN THE ENV MESSENGER-RNA [J].
COCHRANE, AW ;
CHEN, CH ;
ROSEN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (03) :1198-1202