A GENERAL DUALITY THEOREM FOR MARGINAL PROBLEMS

被引:34
作者
RAMACHANDRAN, D [1 ]
RUSCHENDORF, L [1 ]
机构
[1] UNIV FREIBURG,INST MATH STOCHAST,D-79104 FREIBURG,GERMANY
关键词
Mathematics Subject Classification (1991): 60A10; 28A35;
D O I
10.1007/BF01200499
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given probability spaces (X(i), A(i), P-i), i = 1, 2 let M (P-1, P-2) denote the set of all probabilities on the product space with marginals P-1 and P-2 and let h be a measurable function on (X(1) x X(2), A(1) circle times A(2)). In order to determine sup fh dP where the supremum is taken over P in M (P-1, P-2) a general duality theorem is proved. Only the perfectness of one of the coordinate spaces is imposed without any further topological or tightness assumptions. An example is given to show that the assumption of perfectness is essential. Applications to probabilities with given marginals and given supports, stochastic order and probability metrics are included.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 18 条
[1]  
Kantorovich Leonid, 1958, VESTNIK LENINGRAD U, V13, P52
[2]  
KEILERER HG, 1984, Z WAHRSCHEINLICHKEIT, V67, P399
[3]  
KELLERER HG, 1984, 7TH P BRAS C BUC, P211
[4]  
LEVIN VL, 1992, FUNCTIONAL ANAL OPTI, P141
[5]  
Monge G., 1781, HIST ACAD ROYALE SCI, P666
[6]  
NEVEU J, 1965, MATH F CALCULUS PROB
[7]  
Rachev S.T., 1991, PROBABILITY METRICS
[8]  
RAMACHANDRAN D, 1993, IN PRESS AUG P C DIS
[9]  
RAMACHANDRAN D, 1979, ISI LECT NOTES, V7
[10]  
RAMACHANDRAN D, 1979, ISI LECT NOTES, V5