VAPNIK-CHERVONENKIS BOUNDS FOR GENERALIZATION

被引:24
作者
PARRONDO, JMR
VANDENBROECK, C
机构
[1] LIMBURGS UNIV CENTRUM,B-3590 DIEPENBEEK,BELGIUM
[2] UNIV COMPLUTENSE,DEPT FIS APLICADA 1,E-28040 MADRID,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 09期
关键词
D O I
10.1088/0305-4470/26/9/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the Vapnik and Chervonenkis theorem as applied to the problem of generalization. By combining some of the technical modifications proposed in the literature we derive tighter bounds and a new version of the theorem bounding the accuracy in the estimation of generalization probabilities from finite samples. A critical discussion and comparison with the results from statistical mechanics is given.
引用
收藏
页码:2211 / 2223
页数:13
相关论文
共 31 条
[1]   The Vapnik-Chervonenkis Dimension: Information versus Complexity in Learning [J].
Abu-Mostafa, Yaser S. .
NEURAL COMPUTATION, 1989, 1 (03) :312-317
[2]  
[Anonymous], 1991, INTRO THEORY NEURAL, DOI DOI 10.1201/9780429499661
[3]  
ANTHONY M, 1992, COMPUTATIONAL LEARNI
[4]   What Size Net Gives Valid Generalization? [J].
Baum, Eric B. ;
Haussler, David .
NEURAL COMPUTATION, 1989, 1 (01) :151-160
[5]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[6]  
Denker J., 1987, Complex Systems, V1, P877
[7]   BOUNDS FOR THE UNIFORM DEVIATION OF EMPIRICAL MEASURES [J].
DEVROYE, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :72-79
[8]  
DUDLEY RM, 1984, LECTURE NOTES MATH, V1097
[9]   3 UNFINISHED WORKS ON THE OPTIMAL STORAGE CAPACITY OF NETWORKS [J].
GARDNER, E ;
DERRIDA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (12) :1983-1994
[10]   1ST-ORDER TRANSITION TO PERFECT GENERALIZATION IN A NEURAL NETWORK WITH BINARY SYNAPSES [J].
GYORGYI, G .
PHYSICAL REVIEW A, 1990, 41 (12) :7097-7100