PRINCIPAL COMPONENT ANALYSIS OF DYNAMIC POSITRON EMISSION TOMOGRAPHY IMAGES

被引:63
作者
PEDERSEN, F [1 ]
BERGSTROM, M [1 ]
BENGTSSON, E [1 ]
LANGSTROM, B [1 ]
机构
[1] UNIV UPPSALA HOSP, CTR PET, UPPSALA, SWEDEN
来源
EUROPEAN JOURNAL OF NUCLEAR MEDICINE | 1994年 / 21卷 / 12期
关键词
PET IMAGING; MULTIVARIATE IMAGE ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; VISUALIZATION OF MULTIDIMENSIONAL DATA;
D O I
10.1007/BF02426691
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Multivariate image analysis can be used to analyse multivariate medical images. The purpose could be to visualize or classify structures in the image. One common multivariate image analysis technique which can be used for visualization purposes is principal component analysis (PCA). The present work concerns visualization of organs and structures with different kinetics in a dynamic sequence utilizing PCA. When applying PCA on positron emission tomography (PET) images, the result is initially not satisfactory. It is illustrated that one major explanation for the behaviour of PCA when applied to PET images is that it is a data-driven technique which cannot separate signals from high noise levels, With a better understanding of the PCA, gained with a strategy of examining the image data set, the transformations, and the results using visualization tools, a surprisingly easily understood be derived. The proposed enhance clinically interesting information in a dynamic PET imaging sequence in the first few principal component images and thus should be able to aid in the identification of structures for further analysis.
引用
收藏
页码:1285 / 1292
页数:8
相关论文
共 22 条
[1]  
BARBER D, 1992, EUR J NUCL MED, V19, P467
[2]   THE USE OF PRINCIPAL COMPONENTS IN THE QUANTITATIVE-ANALYSIS OF GAMMA-CAMERA DYNAMIC STUDIES [J].
BARBER, DC .
PHYSICS IN MEDICINE AND BIOLOGY, 1980, 25 (02) :283-292
[3]   MUSE - A NEW TOOL FOR INTERACTIVE IMAGE-ANALYSIS AND SEGMENTATION BASED ON MULTIVARIATE-STATISTICS [J].
BENGTSSON, E ;
NORDIN, B ;
PEDERSEN, F .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1994, 42 (03) :181-200
[4]  
Draper N.R, 1998, APPL REGRESSION ANAL, V326, DOI 10.1002/9781118625590
[5]  
Duda RO, 2000, PATTERN CLASSIFICATI
[6]   POSITRON EMISSION TOMOGRAPHY (PET) IN NEUROENDOCRINE GASTROINTESTINAL TUMORS [J].
ERIKSSON, B ;
BERGSTROM, M ;
LILJA, A ;
AHLSTROM, H ;
LANGSTROM, B ;
OBERG, K .
ACTA ONCOLOGICA, 1993, 32 (02) :189-196
[7]   STRATEGY OF MULTIVARIATE IMAGE-ANALYSIS (MIA) [J].
ESBENSEN, K ;
GELADI, P .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 7 (1-2) :67-86
[8]  
FROUIN F, 1989, SPIE, V1137, P37
[9]   PRINCIPAL COMPONENT ANALYSIS OF MULTIVARIATE IMAGES [J].
GELADI, P ;
ISAKSSON, H ;
LINDQVIST, L ;
WOLD, S ;
ESBENSEN, K .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 5 (03) :209-220
[10]  
Gonzalez R. C., 1987, DIGITAL IMAGE PROCES