ON A PAINLEVE TEST OF A COUPLED SYSTEM OF BOUSSINESQ AND SCHRODINGER-EQUATIONS

被引:11
作者
CHANDA, PK
CHOWDHURY, AR
机构
关键词
D O I
10.1063/1.527981
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:843 / 850
页数:8
相关论文
共 20 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]  
[Anonymous], COMMUNICATION
[3]  
BOGOLUBSKY IL, 1975, E49425 DUBN PREPR
[4]   PROLONGATION STRUCTURE FOR LANGMUIR SOLITONS [J].
CHOWDHURY, AR ;
ROY, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (07) :1559-1561
[5]   THE PAINLEVE PROPERTY AND A PARTIAL-DIFFERENTIAL EQUATION WITH AN ESSENTIAL SINGULARITY [J].
CLARKSON, PA .
PHYSICS LETTERS A, 1985, 109 (05) :205-208
[6]  
GIBBON JD, 1985, STUD APPL MATH, V72, P39
[7]   THE ZAKHAROV EQUATIONS - A NON-PAINLEVE SYSTEM WITH EXACT N SOLITON-SOLUTIONS [J].
GOLDSTEIN, P ;
INFELD, E .
PHYSICS LETTERS A, 1984, 103 (1-2) :8-10
[8]  
HIROTA R, 1976, LECTURE NOTES PHYSIC, V515
[9]   PAINLEVE TEST FOR THE SELF-DUAL YANG-MILLS EQUATION [J].
JIMBO, M ;
KRUSKAL, MD ;
MIWA, T .
PHYSICS LETTERS A, 1982, 92 (02) :59-60
[10]  
MA YC, 1979, STUD APPL MATH, V60, P73