ON THE EXISTENCE OF INTEGRAL CURRENTS WITH PRESCRIBED MEAN-CURVATURE VECTOR

被引:17
作者
DUZAAR, F [1 ]
FUCHS, M [1 ]
机构
[1] UNIV DUSSELDORF,INST MATH,W-4000 DUSSELDORF 1,GERMANY
关键词
49F20; 49F22; 53A10; AMS-classification; generalized mean curvature; integral currents; isoperimetric inequality; stationary varifolds;
D O I
10.1007/BF02568422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an integral m-current T 0 in ℝ m+k and a tensor H of typ (m, 1) on ℝ m+k with values orthogonal to each of its arguments we prove the existence of an integral m-current T with boundary ∂T=∂T 0 having prescribed mean curvature vector H, i. e. {Mathematical expression} is a solution of[Figure not available: see fulltext.] for all vectorfields X: ℝ m+k → ℝ m+k with spt(X)∩spt(∂T)=Ø. It turns out that we can solve the above equation assuming {Mathematical expression} where γ m denotes the constant of Almgren's Isoperimetric Theorem and {Mathematical expression} is an integral m-current minimizing mass for the boundary ∂T 0. © 1990 Springer-Verlag.
引用
收藏
页码:41 / 67
页数:27
相关论文
共 20 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]   OPTIMAL ISOPERIMETRIC-INEQUALITIES [J].
ALMGREN, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (03) :451-547
[3]  
ALMGREN FJ, 1983, Q VALUED FUNCTIONS M
[4]  
BAROZZI E, 1984, ATERISQUE, V118, P33
[5]  
Barozzi E., 1983, REND SEMIN MAT U PAD, V70, P89
[6]  
DUZAAR F, INTEGRAL CURRENTS CO
[7]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[8]   EXISTENCE THEOREMS FOR PARAMETRIC SURFACES OF PRESCRIBED MEAN CURVATURE [J].
GULLIVER, R ;
SPRUCK, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (05) :445-&
[9]  
GULLIVER R, 1983, SEMINAR MINIMAL SUBM
[10]  
Heinz E., 1954, MATH ANN, V127, P258