HETEROGENEITY IN THE SUBSTITUTION PROCESS OF AMINO-ACID SITES OF PROTEINS CODED FOR BY MITOCHONDRIAL-DNA

被引:115
作者
REEVES, JH
机构
[1] Statistics Department, University of Georgia, Athens, Georgia
关键词
AMINO ACID SEQUENCE; MAXIMUM LIKELIHOOD METHOD; PHYLOGENETIC INFERENCE; INVARIANT SITES; HETEROGENEITY;
D O I
10.1007/BF00160257
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several forms of maximum likelihood models are applied to aligned amino acid sequence data coded for in the mitochondrial DNA of six species (chicken, frog, human, bovine, mouse, and rat). These models range in form from relatively simple models of the type currently used for inferring phylogenetic tree structure to models more complex than those that have been used previously. No major discrepancies between the optimal trees inferred by any of these methods are found, but there are huge differences in adequacy of fit. A very significant finding is that the fit of any of these models is vastly improved by allowing a certain proportion of the amino acid sites to be invariant. An even more important, a though disquieting, finding is that none of these models fits well, as judged by standard statistical criteria. The primary reason for this is that amino acid sites undergo substitution according to a process that is very heterogeneous. Because most phylogenetic inference is accomplished by choosing the optimal tree under the assumption that a homogeneous process is acting on the sites, the potential invalidity of some such conclusions is raised by this article's results. The seriousness of this problem depends upon the robustness of the phylogenetic inferential procedure to departures from the underlying model.
引用
收藏
页码:17 / 31
页数:15
相关论文
共 20 条
[1]  
ADACHI J, 1992, IN PRESS JPN J GENET
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   COMPLETE SEQUENCE OF BOVINE MITOCHONDRIAL-DNA - CONSERVED FEATURES OF THE MAMMALIAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
DEBRUIJN, MHL ;
COULSON, AR ;
EPERON, IC ;
SANGER, F ;
YOUNG, IG .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 156 (04) :683-717
[4]  
[Anonymous], 1987, STAT SCI, DOI DOI 10.1214/SS/1177013353
[5]   SEQUENCE AND GENE ORGANIZATION OF MOUSE MITOCHONDRIAL-DNA [J].
BIBB, MJ ;
VANETTEN, RA ;
WRIGHT, CT ;
WALBERG, MW ;
CLAYTON, DA .
CELL, 1981, 26 (02) :167-180
[6]   EVOLUTIONARY TREES FROM NUCLEIC-ACID AND PROTEIN SEQUENCES [J].
BISHOP, MJ ;
FRIDAY, AE .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1985, 226 (1244) :271-302
[7]  
Dayhoff MO, 1978, ATL PROTEIN SEQ STRU, V5, P345
[8]   SEQUENCE AND GENE ORGANIZATION OF THE CHICKEN MITOCHONDRIAL GENOME - A NOVEL GENE ORDER IN HIGHER VERTEBRATES [J].
DESJARDINS, P ;
MORAIS, R .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (04) :599-634
[9]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[10]   THE COMPLETE NUCLEOTIDE-SEQUENCE OF THE RATTUS-NORVEGICUS MITOCHONDRIAL GENOME - CRYPTIC SIGNALS REVEALED BY COMPARATIVE-ANALYSIS BETWEEN VERTEBRATES [J].
GADALETA, G ;
PEPE, G ;
DECANDIA, G ;
QUAGLIARIELLO, C ;
SBISA, E ;
SACCONE, C .
JOURNAL OF MOLECULAR EVOLUTION, 1989, 28 (06) :497-516