MOTION OF A PARTICLE IN A VELOCITY-DEPENDENT RANDOM FORCE

被引:9
作者
KARMESHU [1 ]
机构
[1] UNIV DELHI,DELHI 110007,INDIA
关键词
D O I
10.2307/3212523
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:684 / 695
页数:12
相关论文
共 17 条
[1]   ENERGETIC STABILITY OF HARMONIC OSCILLATOR WITH RANDOM PARAMETRIC DRIVING [J].
BOURRET, R .
PHYSICA, 1971, 54 (04) :623-&
[2]   BROWNIAN MOTION OF HARMONIC OSCILLATOR WITH STOCHASTIC FREQUENCY [J].
BOURRET, RC ;
FRISCH, U ;
POUQUET, A .
PHYSICA, 1973, 65 (02) :303-320
[3]  
BRISSAUD A, 1974, J MATH PHYS, V15, P524, DOI 10.1063/1.1666678
[4]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[5]   MULTIPLICATIVE STOCHASTIC-PROCESSES, FOKKER-PLANCK EQUATIONS, AND A POSSIBLE DYNAMICAL MECHANISM FOR CRITICAL BEHAVIOR [J].
FOX, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) :1918-1929
[6]   RELASTIVISTIC STOCHASTIC PROCESSES [J].
HAKIM, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (11) :1805-+
[7]  
HOEL PG, 1954, INTRO MATHEMATICAL S
[8]   STOCHASTIC LIOUVILLE EQUATIONS [J].
KUBO, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :174-&
[9]  
KUBO R, 1974, LECTURE NOTES PHYSIC, V31
[10]  
Landau L. D., 1960, MECHANICS