TRANSITION POINTS IN OCTONIONIC JULIA SETS

被引:26
作者
GRIFFIN, CJ [1 ]
JOSHI, GC [1 ]
机构
[1] UNIV MELBOURNE,DEPT PHYS,PARKVILLE,VIC 3052,AUSTRALIA
关键词
D O I
10.1016/0960-0779(93)90041-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A closer investigation of octonionic Julia sets of a modified quadratic map reveals a direct connection between the strength of the non-associativity parameter and the existence of extended attracting objects. The 'transition point' at which such effects are observed corresponds to the structural phase transitions previously identified, and is shown to be approximately linearly related to the characteristic parameter c. An octonionic generalization of the Mandelbrot set is proposed which is sensitive to these transition points.
引用
收藏
页码:67 / 88
页数:22
相关论文
共 6 条
[1]  
[Anonymous], 1986, BEAUTY FRACTALS IMAG
[2]  
Griffin C. J., 1992, Chaos, Solitons and Fractals, V2, P11, DOI 10.1016/0960-0779(92)90044-N
[3]  
MANDELBROT B, 1983, PHYSICA D, V17, P224
[4]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467
[5]   Iteration of analytic functions [J].
Siegel, CL .
ANNALS OF MATHEMATICS, 1942, 43 :607-612
[6]  
SORGSEPP L, 1979, HADRONIC J, V2, P1388