NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL CONTROLS IN VISCOUS-FLOW PROBLEMS

被引:57
作者
FATTORINI, HO
SRITHARAN, SS
机构
[1] Department of Mathematics, University of California-Los Angeles, Los Angeles
[2] NCCOSC, San Diego
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500028444
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of optimal control problems in viscous flow is studied. Main results are the Pontryagin maximum principle and the verification theorem for the Hamilton-Jacobi-Bellman equation characterising the feedback problem. The maximum principle is established by two quite different methods.
引用
收藏
页码:211 / 251
页数:41
相关论文
共 21 条
[1]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[3]   THE NECESSARY CONDITIONS FOR OPTIMAL-CONTROL IN HILBERT-SPACES [J].
BARBU, V ;
BARRON, EN ;
JENSEN, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 133 (01) :151-162
[4]   THE PONTRYAGIN MAXIMUM PRINCIPLE FROM DYNAMIC-PROGRAMMING AND VISCOSITY SOLUTIONS TO 1ST ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
BARRON, EN ;
JENSEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (02) :635-641
[5]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[6]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[7]  
DESIMON L, 1964, REND SEMIN MAT U PAD, V34, P205
[8]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[9]   NECESSARY CONDITIONS FOR INFINITE-DIMENSIONAL CONTROL-PROBLEMS [J].
FATTORINI, HO ;
FRANKOWSKA, H .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1991, 4 (01) :41-67
[10]   EXISTENCE OF OPTIMAL CONTROLS FOR VISCOUS-FLOW PROBLEMS [J].
FATTORINI, HO ;
SRITHARAN, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1905) :81-102