QR-LIKE ALGORITHMS FOR SYMMETRICAL ARROW MATRICES

被引:14
作者
ARBENZ, P [1 ]
GOLUB, GH [1 ]
机构
[1] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
关键词
QR ALGORITHM; ARROW MATRIX; BORDERED DIAGONAL MATRIX;
D O I
10.1137/0613039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that no QR-like algorithm exists for symmetric arrow matrices, i.e., for matrices whose elements vanish, except those on the diagonal and in the first row and column.
引用
收藏
页码:655 / 658
页数:4
相关论文
共 9 条
[1]  
CUPPEN JJM, 1981, NUMER MATH, V36, P177, DOI 10.1007/BF01396757
[2]  
Golub G.H., 1996, MATH GAZ, VThird
[3]  
GOLUB GH, 1973, SIAM REV, V15, P318, DOI 10.1137/1015032
[4]   THE NUMERICALLY STABLE RECONSTRUCTION OF JACOBI MATRICES FROM SPECTRAL DATA [J].
GRAGG, WB ;
HARROD, WJ .
NUMERISCHE MATHEMATIK, 1984, 44 (03) :317-335
[5]   COMPUTING THE EIGENVALUES AND EIGENVECTORS OF SYMMETRICAL ARROWHEAD MATRICES [J].
OLEARY, DP ;
STEWART, GW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (02) :497-505
[6]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163
[7]   THE USE OF A REFINED ERROR BOUND WHEN UPDATING EIGENVALUES OF TRIDIAGONALS [J].
PARLETT, BN ;
NOUROMID, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 68 (JUL) :179-219
[8]  
van der Waerden B. L., 1971, ALGEBRA, VI
[9]  
Wilkinson JH., 1965, ALGEBRAIC EIGENVALUE