TAIL BEHAVIOR FOR SUPREMA OF EMPIRICAL PROCESSES

被引:24
作者
ADLER, RJ [1 ]
BROWN, LD [1 ]
机构
[1] CORNELL UNIV, DEPT MATH, ITHACA, NY 14853 USA
关键词
D O I
10.1214/aop/1176992616
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1 / 30
页数:30
相关论文
共 29 条
[1]   PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1984, 12 (04) :1041-1067
[2]  
BROWN LD, 1985, UNPUB MULTIVARIATE K
[3]   THE 2-PARAMETER BROWNIAN BRIDGE - KOLMOGOROV INEQUALITIES AND UPPER AND LOWER BOUNDS FOR THE DISTRIBUTION OF THE MAXIMUM [J].
CABANA, EM ;
WSCHEBOR, M .
ANNALS OF PROBABILITY, 1982, 10 (02) :289-302
[5]  
CHUNG KL, 1949, T AM MATH SOC, V67, P36
[6]  
Donsker M., 1951, MEM AM MATH SOC, V6
[7]   JUSTIFICATION AND EXTENSION OF DOOBS HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV THEOREMS [J].
DONSKER, MD .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :277-281
[8]   HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV THEOREMS [J].
DOOB, JL .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (03) :393-403
[9]   MEASURES ON NON-SEPARABLE METRIC SPACES [J].
DUDLEY, RM .
ILLINOIS JOURNAL OF MATHEMATICS, 1967, 11 (03) :449-&
[10]   ON THE KOLMOGOROV-SMIRNOV LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTIONS [J].
FELLER, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (02) :177-189