EVOLUTION OF RIVER NETWORKS

被引:89
作者
KRAMER, S [1 ]
MARDER, M [1 ]
机构
[1] UNIV TEXAS, CTR NONLINEAR DYNAM, AUSTIN, TX 78712 USA
关键词
D O I
10.1103/PhysRevLett.68.205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Why does a sheet of water flowing over an initially featureless surface spontaneously form a river network? To address this question, we construct a simple model which enables us to examine the shape and stability of individual river channels. We compare predictions for the geometry of fluvial channels with experimental data. In addition, we construct a lattice model which allows us to look at large-scale features of river networks and calculate their scaling relations.
引用
收藏
页码:205 / 208
页数:4
相关论文
共 33 条
[1]  
ACKERS P, 1964, J HYDRAULICS DIVISIO, V90, P1
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]   VISCOUS FLOWS IN 2 DIMENSIONS [J].
BENSIMON, D ;
KADANOFF, LP ;
LIANG, SD ;
SHRAIMAN, BI ;
TANG, C .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :977-999
[4]  
Friesner R. A., 1989, Journal of Scientific Computing, V4, P327, DOI 10.1007/BF01060992
[5]   THE DEVELOPMENT OF DRAINAGE SYSTEMS: A SYNOPTIC VIEW [J].
Glock, Waldo S. .
GEOGRAPHICAL REVIEW, 1931, 21 (03) :475-482
[6]  
Lacey G., 1930, P I CIV ENG T TELF I, V229, P259, DOI DOI 10.1680/IMOTP.1930.15592
[7]   EXISTENCE OF NEEDLE CRYSTALS IN LOCAL MODELS OF SOLIDIFICATION [J].
LANGER, JS .
PHYSICAL REVIEW A, 1986, 33 (01) :435-441
[8]  
Leopold L. B., 1953, HYDRAULIC GEOMETRY S
[9]  
LEOPOLD LB, 1962, 500A US GEOL SURV PR
[10]  
LEOPOLD LB, 1956, 282A US GEOL SURV PR