THE A-CONTRACTIVE 2ND-ORDER MULTISTEP FORMULAS WITH VARIABLE STEPS

被引:7
作者
LINIGER, W
机构
关键词
SECOND-ORDER MULTISTEP FORMULAS;
D O I
10.1137/0720093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (k minus 1)-parameter family of all second-order k-step formulas which are A-contractive in the max norm is derived for arbitrary variable integration steps. A-contractive methods are suitable for generating stable numerical solutions of stiff problems which lack smoothness. For example, A-contractive one-leg methods are guaranteed to be stable with respect to dx/dt equals lambda (t)x for any lambda (t) satisfying Re lambda (t) less than equivalent to 0 and arbitrary step sequences left brace h//n right brace . There also is evidence that A-contractive one-leg methods give very accurate amplitude responses when applied with variable steps to certain stiff problems with oscillatory nonstiff modes and little or no dissipation.
引用
收藏
页码:1231 / 1238
页数:8
相关论文
共 24 条
[1]   STABILITY OF DYNAMICAL-SYSTEMS - CONSTRUCTIVE APPROACH [J].
BRAYTON, RK ;
TONG, CH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1979, 26 (04) :224-234
[2]  
BRAYTON RK, 1972, TOPICS NUMERICAL ANA, P13
[3]   STABILITY-CRITERIA FOR IMPLICIT RUNGE-KUTTA METHODS [J].
BURRAGE, K ;
BUTCHER, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :46-57
[4]  
Butcher J. C., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P358, DOI 10.1007/BF01931672
[5]  
Dahlquist, 1978, RECENT ADV NUMERICAL, P1
[6]  
Dahlquist G., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P384, DOI 10.1007/BF01932018
[7]  
DAHLQUIST G, 1977, TOPICS NUMERICAL ANA, V3, P349
[8]  
Dahlquist G., 1975, LECT NOTES MATH, P60
[9]  
DAHLQUIST G, 1975, TRITANA7508 ROYAL I
[10]  
Dahlquist G, 1979, TRITANA7904 ROYAL I