CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM

被引:77
作者
ANTONOWICZ, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
关键词
D O I
10.1016/0375-9601(90)90606-O
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new reduction procedure for integrable multi-Hamiltonian PDEs is introduced. It leads to a multi-Hamiltonian description of the resulting finite dimensional dynamical systems. The bi-Hamiltonian structure of the Garnier system is studied in some detail. © 1990.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 13 条
[1]   FACTORIZATION OF ENERGY-DEPENDENT SCHRODINGER-OPERATORS - MIURA MAPS AND MODIFIED SYSTEMS [J].
ANTONOWICZ, M ;
FORDY, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) :465-486
[2]   COUPLED KDV EQUATIONS WITH MULTI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP .
PHYSICA D, 1987, 28 (03) :345-357
[3]   INTEGRABLE STATIONARY FLOWS - MIURA MAPS AND BI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP ;
WOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1987, 124 (03) :143-150
[4]  
BOGOYAVLENSKII OI, 1976, FUNCT ANAL APPL, V10, P8
[5]  
Cao C.W., 1987, HENAN SCI, V5, P1
[6]   COMPLETELY INTEGRABLE CLASS OF MECHANICAL SYSTEMS CONNECTED WITH KORTEWEG-DE VRIES AND MULTICOMPONENT SCHRODINGER EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
LETTERE AL NUOVO CIMENTO, 1978, 22 (02) :47-51
[7]   KAC-MOODY LIE-ALGEBRAS AND SOLITON-EQUATIONS .3. STATIONARY EQUATIONS ASSOCIATED WITH A1 [J].
FLASCHKA, H ;
NEWELL, AC ;
RATIU, T .
PHYSICA D, 1983, 9 (03) :324-332
[8]  
FLASCHKA H, 1983, NONLINEAR INTEGRABLE, P221
[9]  
Garnier R., 1919, REND CIRC MAT PALERM, V43, P155, DOI 10.1007/BF03014668
[10]   INTEGRABILITY OF ONE PARTICLE IN A PERTURBED CENTRAL QUARTIC POTENTIAL [J].
WOJCIECHOWSKI, S .
PHYSICA SCRIPTA, 1985, 31 (06) :433-438