DIFFERENTIAL-EQUATIONS FOR PERIODS AND FLAT COORDINATES IN 2-DIMENSIONAL TOPOLOGICAL MATTER THEORIES

被引:64
作者
LERCHE, W
SMIT, DJ
WARNER, NP
机构
[1] CALTECH,PASADENA,CA 91125
[2] UNIV CALIF BERKELEY,DEPT PHYS,BERKELEY,CA 94720
[3] UNIV SO CALIF,DEPT PHYS,LOS ANGELES,CA 90089
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90313-Z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider two-dimensional topological Landau - Ginzburg models. In order to obtain the free energy of these models, and to determine the Kahler potential for the marginal perturbations, one needs to determine flat or "special" coordinates that can be used to parametrize the perturbations of the superpotentials. This paper describes the relationship between the natural Landau - Ginzburg parametrization and these flat coordinates. In particular we show how one can explicitly obtain the differential equations that relate the two. We discuss the problem for both Calabi - Yau manifolds and for general topological matter models (with arbitrary central charges) with relevant and marginal perturbations. We also give a number of examples.
引用
收藏
页码:87 / 112
页数:26
相关论文
共 46 条
[1]  
Arnol'd V. I., LONDON MATH SOC LECT, V53
[2]   LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS .2. [J].
ATIYAH, MF ;
BOTT, R ;
GARDING, L .
ACTA MATHEMATICA, 1973, 131 (3-4) :145-206
[3]   A theorem on matrices of analytic functions [J].
Birkhoff, GD .
MATHEMATISCHE ANNALEN, 1913, 74 :122-133
[4]  
BLOK B, IASSNSHEP915 PREPR
[5]  
CADAVID A, CERNTH6154 PREPR
[6]   YUKAWA COUPLINGS BETWEEN (2,1)-FORMS [J].
CANDELAS, P .
NUCLEAR PHYSICS B, 1988, 298 (03) :458-492
[7]   MODULI SPACE OF CALABI-YAU MANIFOLDS [J].
CANDELAS, P ;
DELAOSSA, XC .
NUCLEAR PHYSICS B, 1991, 355 (02) :455-481
[8]  
CANDELAS P, UTTG251990 U TEX PRE
[9]   SPECIAL KAHLER GEOMETRY - AN INTRINSIC FORMULATION FROM N=2 SPACE-TIME SUPERSYMMETRY [J].
CASTELLANI, L ;
DAURIA, R ;
FERRARA, S .
PHYSICS LETTERS B, 1990, 241 (01) :57-62
[10]   SPECIAL GEOMETRY WITHOUT SPECIAL COORDINATES [J].
CASTELLANI, L ;
DAURIA, R ;
FERRARA, S .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (10) :1767-1790