DIMENSION OF INVARIANT-MEASURES FOR MAPS WITH EXPONENT ZERO

被引:37
作者
LEDRAPPIER, F
MISIUREWICZ, M
机构
[1] UNIV PARIS 06,PROBABIL LAB,F-75230 PARIS 05,FRANCE
[2] TECH UNIV WARSAW,INST MATH,PL-00901 WARSAW,POLAND
关键词
D O I
10.1017/S0143385700003187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:595 / 610
页数:16
相关论文
共 12 条
[1]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[2]  
BRIN M, 1983, LECT NOTES MATH, V1007
[3]   ON THE EXISTENCE OF FEIGENBAUM FIXED-POINT [J].
CAMPANINO, M ;
EPSTEIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :261-302
[4]   UNIVERSAL PROPERTIES OF MAPS ON AN INTERVAL [J].
COLLET, P ;
ECKMANN, JP ;
LANFORD, OE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (03) :211-254
[5]  
COLLET P, 1980, PROGR PHYSICS
[6]   ON THE HAUSDORFF DIMENSION OF FRACTAL ATTRACTORS [J].
GRASSBERGER, P .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (01) :173-179
[7]  
KHANIN KM, 1984, USPEHI, V39
[8]   A COMPUTER-ASSISTED PROOF OF THE FEIGENBAUM CONJECTURES [J].
LANFORD, OE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) :427-434
[9]   SOME RELATIONS BETWEEN DIMENSION AND LYAPOUNOV EXPONENTS [J].
LEDRAPPIER, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (02) :229-238
[10]  
Misiurewicz M., 1982, ERGOD THEORY DYN SYS, V2, P405