WEAKLY NONLINEAR HYDRODYNAMIC INSTABILITIES IN INERTIAL FUSION

被引:219
作者
HAAN, SW
机构
[1] Lawrence Livermore National Laboratory, University of California, Livermore
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1991年 / 3卷 / 08期
关键词
D O I
10.1063/1.859603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For many cases of interest to inertial fusion, growth of Rayleigh-Taylor and other hydrodynamic instabilities is such that the perturbations remain linear or weakly nonlinear. The transition to nonlinearity is studied via a second-order solution for multimode classical Rayleigh-Taylor growth. The second-order solution shows how classical Rayleigh-Taylor systems forget initial amplitude information in the weakly nonlinear phase. Stabilized growth relevant to inertial fusion is qualitatively different, and initial amplitudes are not dominated by nonlinear effects. In all systems with a full spectrum of modes, nonlinear effects begin when mode amplitudes reach about 1/Lk2, for modes of wave number k and system size L.
引用
收藏
页码:2349 / 2355
页数:7
相关论文
共 46 条
[1]  
ANDRONOV VA, 1976, ZH EKSP TEOR FIZ, V44, P424
[2]   EFFECTS OF SURFACE TENSION AND VISCOSITY ON TAYLOR INSTABILITY [J].
BELLMAN, R ;
PENNINGTON, RH .
QUARTERLY OF APPLIED MATHEMATICS, 1954, 12 (02) :151-162
[3]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[4]  
Chandrasekhar S., 1968, HYDRODYNAMIC HYDROMA
[5]   DYNAMIC INSTABILITY OF ACCELERATED FLUIDS [J].
CHANG, CT .
PHYSICS OF FLUIDS, 1959, 2 (06) :656-663
[6]  
DAHLBURG JP, 1990, B AM PHYS SOC, V35, P1969
[7]  
DAHLBURG JP, 1989, B AM PHYS SOC, V34, P2114
[8]  
DESSELBERGER M, 1990, PHYS REV LETT, V65, P2998
[9]   TAYLOR INSTABILITY OF FINITE SURFACE WAVES [J].
EMMONS, HW ;
CHANG, CT ;
WATSON, BC .
JOURNAL OF FLUID MECHANICS, 1960, 7 (02) :177-&
[10]   NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY [J].
GARDNER, JH ;
BODNER, SE ;
DAHLBURG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04) :1070-1074