CONFORMATION-SPACE RENORMALIZATION OF RANDOMLY BRANCHED POLYMERS

被引:7
作者
CUI, SM [2 ]
CHEN, ZY
机构
[1] UNIV WATERLOO,GUELPH WATERLOO PROGRAM GRAD WORK PHYS,WATERLOO,ON N2L 3G1,CANADA
[2] UNIV WATERLOO,DEPT PHYS,WATERLOO,ON N2L 3G1,CANADA
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 04期
关键词
D O I
10.1103/PhysRevE.52.3943
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a renormalization group theory in polymer conformation space to describe randomly branched polymers in which monomers interact with each other through the excluded volume interaction. We make a perturbation expansion for the mean square radius of gyration of randomly branched polymers with annealed structures and identify the appropriate scaling variable. We further perform a renormalization group analysis that results in the epsilon expansion for the critical exponents of the radius of gyration nu=1/4+epsilon/36 and of the number of configurations theta=5/2-epsilon/12, which are consistent with the re- sults of an earlier theory.
引用
收藏
页码:3943 / 3955
页数:13
相关论文
共 28 条
  • [1] Amit DJ., 2005, FIELD THEORY RENORMA, V3rd
  • [2] [Anonymous], 1987, RENORMALIZATION GROU
  • [3] [Anonymous], 1971, MODERN THEORY POLYM
  • [4] [Anonymous], 1979, SCALING CONCEPTS POL
  • [5] BUNDE A, 1994, PHYS REV LETT, V74, P2714
  • [6] Cai S., UNPUB
  • [7] BRANCHED POLYMERS AND GELS
    DAOUD, M
    LAPP, A
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (18) : 4021 - 4050
  • [8] PHASE-SEPARATION IN BRANCHED POLYMER-SOLUTIONS
    DAOUD, M
    PINCUS, P
    STOCKMAYER, WH
    WITTEN, T
    [J]. MACROMOLECULES, 1983, 16 (12) : 1833 - 1839
  • [9] CONFORMATION OF BRANCHED POLYMERS
    DAOUD, M
    JOANNY, JF
    [J]. JOURNAL DE PHYSIQUE, 1981, 42 (10): : 1359 - 1371
  • [10] STATISTICS OF BRANCHING AND HAIRPIN HELICES FOR DAT COPOLYMER
    DEGENNES, PG
    [J]. BIOPOLYMERS, 1968, 6 (05) : 715 - &