GENERALIZED EXTENDED TO THE LIMIT SPARSE FACTORIZATION TECHNIQUES FOR SOLVING UNSYMMETRIC FINITE-ELEMENT SYSTEMS

被引:11
作者
LIPITAKIS, EA
机构
关键词
D O I
10.1007/BF02243576
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:255 / 270
页数:16
相关论文
共 17 条
[1]  
Buleev N. I., 1960, MATH SBORNIK, V51, P227
[2]  
CUTHILL E, 1972, SPARSE MATRICES THEI
[3]   A NORMALIZED IMPLICIT CONJUGATE GRADIENT-METHOD FOR THE SOLUTION OF LARGE SPARSE SYSTEMS OF LINEAR-EQUATIONS [J].
EVANS, DJ ;
LIPITAKIS, EA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1980, 23 (01) :1-19
[4]  
EVANS DJ, 1973, 1972 P BRUN U C, P427
[5]  
Irons B.M., 1970, INT J NUMER METH ENG, V2, P5
[6]  
Jennings A., 1977, MATRIX COMPUTATION E
[7]  
JENNINGS A, 1971, LARGE SPARSE SETS LI
[8]  
KIM YJ, 1973, THESIS U ILLINOIS UR
[9]  
Lipitakis E. A., 1979, Mathematics and Computers in Simulation, V21, P189, DOI 10.1016/0378-4754(79)90133-2
[10]   SOLVING NON-LINEAR ELLIPTIC DIFFERENCE-EQUATIONS BY EXTENDABLE SPARSE FACTORIZATION PROCEDURES [J].
LIPITAKIS, EA ;
EVANS, DJ .
COMPUTING, 1980, 24 (04) :325-339