ON MODELS WITH NON-ROUGH POINCARE HOMOCLINIC CURVES

被引:90
作者
GONCHENKO, SV
SHILNIKOV, LP
TURAEV, DV
机构
[1] Scientific Research Institute for Applied Mathematics and Cybernetics, Nizhnii Novgorod
来源
PHYSICA D | 1993年 / 62卷 / 1-4期
关键词
D O I
10.1016/0167-2789(93)90268-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The possibility of an a priori complete description of finite-parameter models including systems with structurally unstable Poincare homoclinic curves is studied. The main result reported here is that systems having a countable set of moduli of OMEGA-equivalence and systems having infinitely many degenerate periodic and homoclinic orbits are dense in the Newhouse regions of OMEGA-non-stability. We discuss the question of correctly setting a problem for the analysis of models of such type.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 26 条
[1]  
Afraimovich V. S., 1983, METHODS QUALITATIVE, P3
[2]  
ALEKSEEV VM, 1973, 11TH SUMMER MATH SCH
[3]  
Bykov V., 1989, METHODS QUALITATIVE, P151
[4]  
CARTWRIGHT ML, 1957, ACTA MATH, V98, P1
[5]   DIFFEOMORPHISMS ON SURFACES WITH A FINITE NUMBER OF MODULI [J].
DEMELO, W ;
VANSTRIEN, SJ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :415-462
[6]  
GAVRILOV NK, 1973, MATH USSR SB, V19
[7]  
Gonchenko S.V., 1983, MAT ZAMETKI, V33, P745
[8]  
Gonchenko S. V., 1990, UKR MAT ZH, V42, P153, DOI 10.1007/BF01071004
[9]  
GONCHENKO SV, 1986, SOV MATH DOKL, V33, P234
[10]  
GONCHENKO SV, 1980, METHODS QUALITATIVE, P31