GENERALIZED ABELIAN SANDPILE MODEL

被引:4
作者
CHAU, HF [1 ]
机构
[1] UNIV HONG KONG,DEPT PHYS,HONG KONG,HONG KONG
来源
PHYSICA A | 1994年 / 205卷 / 1-3期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0378-4371(94)90506-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A sufficient condition for which the particle addition operations commute in the eventual phase space of a class of sandpile models with either integral or real local heights are obtained. In case the local heights take on real numbers, the volume of the eventual phase space is found to be less-than-or-equal-to \det DELTA\ under the usual Lebesgue measure, which extends the earlier result by Dhar for the integral case. The geometrical aspect of the results, including the effect on the avalanche size distribution, are also discussed.
引用
收藏
页码:292 / 298
页数:7
相关论文
共 6 条
[1]   GENERALIZED ABELIAN SANDPILE MODEL [J].
CHAU, HF ;
CHENG, KS .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) :5109-5117
[2]   GENERALIZED SANDPILE MODEL AND THE CHARACTERIZATION OF THE EXISTENCE OF SELF-ORGANIZED CRITICALITY [J].
CHAU, HF ;
CHENG, KS .
PHYSICAL REVIEW A, 1991, 44 (10) :6233-6240
[3]  
CHAU HF, 1994, IN PRESS PHYS REV E
[4]   ON THE STRUCTURE OF ABSOLUTE STEADY-STATES IN SANDPILE TYPE OF CELLULAR-AUTOMATA - THE GEOMETRICAL ASPECT [J].
CHUNG, SK ;
CHAU, HF .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (09) :4014-4024
[5]   SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS [J].
DHAR, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1613-1616
[6]   ABELIAN AVALANCHES AND TUTTE POLYNOMIALS [J].
GABRIELOV, A .
PHYSICA A, 1993, 195 (1-2) :253-274