ASYMPTOTIC LAWS FOR ONE-DIMENSIONAL DIFFUSIONS CONDITIONED TO NONABSORPTION

被引:40
作者
COLLET, P [1 ]
MARTINEZ, S [1 ]
SANMARTIN, J [1 ]
机构
[1] UNIV CHILE,FAC CIENCIAS FIS & MATEMAT,DEPT INGN MATEMAT,SANTIAGO,CHILE
关键词
ONE-DIMENSIONAL DIFFUSIONS; H-PROCESSES; ABSORPTION;
D O I
10.1214/aop/1176988185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
If (X(t)) is a one-dimensional diffusion corresponding to the operator L = 1/2 partial derivative(xx) - alpha partial derivative(x) starting from x > 0 and T-a is the hitting time of a, we prove that under suitable conditions on the drift coefficient the following Limit exists: For All s > 0, For All Alpha is an element of f(s), lim(t-->infinity)P(x)(X is an element of Alpha\T-0 > t). We characterize this limit as the distribution of an h-like process, h satisfying Lh = - eta h, h(0) = 0, h'(0) = 1, where eta = -lim(t-->infinity)(1/t)logP(x)(T-0 > t). Moreover, we show that this parameter eta can only take two values: eta = 0 Or eta = lambda, where lambda is the smallest point of increase of the spectral distribution of the operator l* = 1/2 partial derivative(xx) + partial derivative(x)(alpha .).
引用
收藏
页码:1300 / 1314
页数:15
相关论文
共 8 条
[1]  
AZENCOTT R, 1974, B SOC MATH FR, V102, P193
[2]  
Coddington A., 1955, THEORY ORDINARY DIFF
[4]  
Karatzas I., 1988, BROWNIAN MOTION STOC, DOI 10.1007/978-1-4612-0949-2
[5]   BROWNIAN LOCAL TIMES AND TABOO PROCESSES [J].
KNIGHT, FB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 143 (SEP) :173-&
[6]   QUASI-STATIONARY DISTRIBUTIONS FOR A BROWNIAN-MOTION WITH DRIFT AND ASSOCIATED LIMIT LAWS [J].
MARTINEZ, S ;
SANMARTIN, J .
JOURNAL OF APPLIED PROBABILITY, 1994, 31 (04) :911-920
[8]  
[No title captured]