RENORMALIZATION EXPONENTS AND OPTIMAL POINTWISE RATES OF CONVERGENCE

被引:66
作者
DONOHO, DL [1 ]
LOW, MG [1 ]
机构
[1] UNIV PENN,WHARTON SCH,DEPT STAT,PHILADELPHIA,PA 19104
关键词
RADON TRANSFORM; RIESZ TRANSFORM; DECONVOLUTION; PARTIAL DECONVOLUTION; MINIMAX KERNELS; BOUNDARY KERNELS; MINIMAX LINEAR ESTIMATION; MINIMAX RISK; WHITE NOISE MODEL; GAUSSIAN EXPERIMENTS;
D O I
10.1214/aos/1176348665
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Simple renormalization arguments can often be used to calculate optimal rates of convergence for estimating linear functionals from indirect measurements contaminated with white noise. This allows one to quickly identify optimal rates for certain problems of density estimation, nonparametric regression, signal recovery and tomography. Optimal kernels may also be derived from renormalization; we give examples for deconvolution and tomography.
引用
收藏
页码:944 / 970
页数:27
相关论文
共 42 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[3]   LOWER BOUNDS FOR NONPARAMETRIC DENSITY ESTIMATION RATES [J].
BOYD, DW ;
STEELE, JM .
ANNALS OF STATISTICS, 1978, 6 (04) :932-934
[4]   ESTIMATION OF DENSITIES - MINIMAL RISK [J].
BRETAGNOLLE, J ;
HUBER, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (02) :119-137
[5]   INFORMATION INEQUALITY BOUNDS ON THE MINIMAX RISK (WITH AN APPLICATION TO NONPARAMETRIC REGRESSION) [J].
BROWN, LD ;
LOW, MG .
ANNALS OF STATISTICS, 1991, 19 (01) :329-337
[6]  
BROWN LD, 1990, ASYMPTOTIC EQUIVALEN
[7]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[8]  
Deans S., 1983, RADON TRANSFORM SOME
[9]   GEOMETRIZING RATES OF CONVERGENCE .3. [J].
DONOHO, DL ;
LIU, RC .
ANNALS OF STATISTICS, 1991, 19 (02) :668-701
[10]  
DONOHO DL, 1989, 213 U CAL DEP STAT T