AN E-BOX MEDIATES ACTIVATION AND REPRESSION OF THE ACETYLCHOLINE-RECEPTOR DELTA-SUBUNIT GENE DURING MYOGENESIS

被引:79
作者
SIMON, AM [1 ]
BURDEN, SJ [1 ]
机构
[1] MIT,DEPT BIOL,16-820,CAMBRIDGE,MA 02139
关键词
D O I
10.1128/MCB.13.9.5133
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genes encoding the skeletal muscle acetylcholine receptor (AChR) are induced during muscle development and are regulated subsequently by innervation. Because both the initiation and the subsequent regulation of AChR expression are controlled by transcriptional mechanisms, an understanding of the steps that regulate AChR expression following innervation is likely to require knowledge of the pathway that activates AChR genes during myogenesis. Thus, we sought to identify the cis-acting sequences that regulate expression of the AChR delta-subunit gene during muscle differentiation. We transfected muscle and nonmuscle cell lines with gene fusions between 5'-flanking DNA from the AChR delta-subunit gene and the human growth hormone gene, and we show here that 148 bp of 5'-flanking DNA from the AChR delta-subunit gene contains two regulatory elements that control muscle-specific gene expression. One element is an E box, which is important both for activation of the delta-subunit gene in myotubes and for its repression in myoblasts and nonmuscle cells. Mutation of this E box, which prevents binding of MyoD-E2A and myogenin-E2A heterodimers, decreases expression in myotubes and increases expression in myoblasts and nonmuscle cells. An E-box binding activity, which does not contain MyoD, myogenin, or E2A proteins, is present in muscle and nonmuscle cells and may be responsible for repressing the delta-subunit gene in myoblasts and nonmuscle cells. An enhancer, which lacks E boxes, is also required for expression of the delta-subunit gene but does not confer muscle-specific expression.
引用
收藏
页码:5133 / 5140
页数:8
相关论文
共 51 条
[1]  
ABMAYR SM, 1990, CURRENT PROTOCOLS MO
[2]   NEGATIVE REGULATION BY GLUCOCORTICOIDS THROUGH INTERFERENCE WITH A CAMP RESPONSIVE ENHANCER [J].
AKERBLOM, IE ;
SLATER, EP ;
BEATO, M ;
BAXTER, JD ;
MELLON, PL .
SCIENCE, 1988, 241 (4863) :350-353
[3]   ISOLATION AND CHARACTERIZATION OF THE MOUSE ACETYLCHOLINE-RECEPTOR DELTA-SUBUNIT GENE - IDENTIFICATION OF A 148-BP CIS-ACTING REGION THAT CONFERS MYOTUBE-SPECIFIC EXPRESSION [J].
BALDWIN, TJ ;
BURDEN, SJ .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2271-2279
[4]   A 40-KILODALTON PROTEIN BINDS SPECIFICALLY TO AN UPSTREAM SEQUENCE ELEMENT ESSENTIAL FOR MUSCLE-SPECIFIC TRANSCRIPTION OF THE HUMAN MYOGLOBIN PROMOTER [J].
BASSELDUBY, R ;
HERNANDEZ, MD ;
GONZALEZ, MA ;
KRUEGER, JK ;
WILLIAMS, RS .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (11) :5024-5032
[5]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[6]   MULTIPLE SEQUENCE ELEMENTS OF A SINGLE FUNCTIONAL CLASS ARE REQUIRED FOR CYCLIC-AMP RESPONSIVENESS OF THE MOUSE C-FOS PROMOTER [J].
BERKOWITZ, LA ;
RIABOWOL, KT ;
GILMAN, MZ .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (10) :4272-4281
[7]   DIFFERENCES AND SIMILARITIES IN DNA-BINDING PREFERENCES OF MYOD AND E2A PROTEIN COMPLEXES REVEALED BY BINDING-SITE SELECTION [J].
BLACKWELL, TK ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1104-1110
[8]   SEQUENCE-SPECIFIC DNA-BINDING BY THE C-MYC PROTEIN [J].
BLACKWELL, TK ;
KRETZNER, L ;
BLACKWOOD, EM ;
EISENMAN, RN ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1149-1151
[9]   MYOGENIN RESIDES IN THE NUCLEUS AND ACQUIRES HIGH-AFFINITY FOR A CONSERVED ENHANCER ELEMENT ON HETERODIMERIZATION [J].
BRENNAN, TJ ;
OLSON, EN .
GENES & DEVELOPMENT, 1990, 4 (04) :582-595
[10]  
BRENNER HR, 1992, DEVELOPMENT, V116, P41