GLOBAL-SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS FOR A REACTING MIXTURE

被引:89
作者
CHEN, GQ [1 ]
机构
[1] ARGONNE NATL LAB,DIV MATH & COMP SCI,ARGONNE,IL 60439
关键词
GLOBAL GENERALIZED SOLUTIONS; ASYMPTOTIC BEHAVIOR; EQUIVALENCE; COMBUSTION; DISCONTINUOUS ARRHENIUS FUNCTIONS; A PRIORI ESTIMATES; NAVIER-STOKES EQUATIONS;
D O I
10.1137/0523031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence theorems are established for global generalized solutions to the compressible Navier-Stokes equations for a reacting mixture with discontinuous Arrhenius functions, which describe dynamic combustion. Equivalence of the Navier-Stokes equations in the Euler coordinates and the Lagrange coordinates for the generalized solutions is verified. The asymptotic behavior of the generalized solutions with different boundary conditions is identified and proved.
引用
收藏
页码:609 / 634
页数:26
相关论文
共 24 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
CHEN GQ, 1988, ACTA MATH SCI, V8, P85
[3]  
COLLELA P, 1986, SIAM J SCI STAT COMP, V7, P1059
[4]  
Courant R., 1948, SUPERSONIC FLOW SHOC
[6]   ON THE DETONATION OF A COMBUSTIBLE GAS [J].
GARDNER, RA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (02) :431-468
[7]  
GLIMM J, 1989, LECT NOTES PHYS, V344, P177
[8]   DISCONTINUOUS SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLOW [J].
HOFF, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :15-46
[9]   GLOBAL WELL-POSEDNESS OF THE CAUCHY-PROBLEM FOR THE NAVIER-STOKES EQUATIONS OF NONISENTROPIC FLOW WITH DISCONTINUOUS INITIAL DATA [J].
HOFF, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (01) :33-74
[10]  
Itaya N., 1971, KODAI MATH J, V23, P60