ESTIMATION OF THE NUMBER OF JUMPS OF THE JUMP REGRESSION-FUNCTIONS

被引:33
作者
QIU, PH [1 ]
机构
[1] UNIV WISCONSIN, DEPT CIVIL ENGN, MADISON, WI 53706 USA
关键词
JUMP REGRESSION FUNCTIONS; KERNEL SMOOTHERS; AS CONSISTENT; RATE OF CONVERGENCE;
D O I
10.1080/03610929408831378
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper suggests an estimator of the number of jumps of the jump regression functions. The estimator is based on the difference between right and left one-sided kernel smoothers. It is proved to be a.s. consistent. Some results about its rate of convergence are also provided.
引用
收藏
页码:2141 / 2155
页数:15
相关论文
共 15 条
[1]  
CHEN XR, 1988, SCI SINICA A, V8, P1
[2]   NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION [J].
CHENG, KF ;
LIN, PE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :223-233
[3]  
COBB GW, 1978, BIOMETRIKA, V65, P243, DOI 10.2307/2335202
[4]  
Draper NR, 1981, APPL REGRESSION ANAL, V2nd, DOI 10.1002/9781118625590
[5]   EDGE-PRESERVING AND PEAK-PRESERVING SMOOTHING [J].
HALL, P ;
TITTERINGTON, DM .
TECHNOMETRICS, 1992, 34 (04) :429-440
[6]  
HARDLE W, 1990, APPLIED NONPARAMETRI
[7]   SMOOTHING WITH SPLIT LINEAR FITS [J].
MCDONALD, JA ;
OWEN, AB .
TECHNOMETRICS, 1986, 28 (03) :195-208
[8]  
MEDVEDEV G, 1986, DETECTION CHANGES RA
[9]   CHANGE-POINTS IN NONPARAMETRIC REGRESSION-ANALYSIS [J].
MULLER, HG .
ANNALS OF STATISTICS, 1992, 20 (02) :737-761
[10]  
Qiu P, 1991, SYSTEMS SCI MATH SCI, V4, P1