RANDOM AFFINE ITERATED FUNCTION SYSTEMS - CURVE GENERATION AND WAVELETS

被引:20
作者
BERGER, MA
机构
关键词
ITERATED FUNCTION SYSTEM; SUBDIVISION METHOD; WAVELETS;
D O I
10.1137/1034082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown how refinement methods for smooth curve generation can be carried out efficiently through iterated function systems (IFS). Affine transformations are constructed so that, when composed randomly, they generate the desired smooth curve. Underlying this random algorithm is the "tree traversal" property of IFS. Under a refinement method the points on the curve correspond to leaves on some N-ary tree. IFS theory enables one to generate all of these leaves through a single orbit of an appropriate Markov chain. Applications include Bezier curves, splines, wavelets and various interpolants.
引用
收藏
页码:361 / 385
页数:25
相关论文
共 21 条
[1]   RECURRENT ITERATED FUNCTION SYSTEMS [J].
BARNSLEY, MF ;
ELTON, JH ;
HARDIN, DP .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :3-31
[2]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[3]  
BERGER MA, 1991, DIFFUSION PROCESSES, V2
[4]  
CHAIKIN GM, 1974, COMPUT GRAPHICS IMAG, V3, P346
[5]  
de Rham G., 1956, J MATH PURE APPL, V35, P25
[6]  
de Rham G., 1947, ELEM MATH, V2, P89
[7]  
DERHAM G, 1947, ELEM MATH, V2, P73
[8]  
Diaconis P., 1986, CONT MATH, V50, P173
[9]  
Dyn N., 1987, Computer-Aided Geometric Design, V4, P257, DOI 10.1016/0167-8396(87)90001-X
[10]  
DYN N, 1986, APPROXIMATION THEORY, V5, P335