ON THE EQUIVALENCE OF CONSTRAINED AND COMPOUND OPTIMAL DESIGNS

被引:134
作者
COOK, RD [1 ]
WONG, WK [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT BIOSTAT,LOS ANGELES,CA 90024
关键词
D OPTIMALITY; EFFICIENCY; INFORMATION MATRIX; LARGE SAMPLE DESIGN;
D O I
10.2307/2290872
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Constrained and compound optimal designs represent two well-known methods for dealing with multiple objectives in optimal design as reflected by two functionals phi1 and phi2 on the space of information matrices. A constrained optimal design is constructed by optimizing phi2 subject to a constraint on phi1, and a compound design is found by optimizing a weighted average of the functionals phi = lambdaphi1 + (1 - lambda)phi2, 0 less-than-or-equal-to lambda less-than-or-equal-to 1. We Show that these two approaches to handling multiple objectives are equivalent.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 20 条
[1]   RECENT DEVELOPMENTS IN THE METHODS OF OPTIMUM AND RELATED EXPERIMENTAL-DESIGNS [J].
ATKINSON, AC .
INTERNATIONAL STATISTICAL REVIEW, 1988, 56 (02) :99-115
[2]  
Bohning D., 1981, Mathematische Operationsforschung und Statistik, Series Statistics, V12, P487, DOI 10.1080/02331888108801608
[3]  
BOX GEP, 1975, BIOMETRIKA, V62, P347, DOI 10.1093/biomet/62.2.347
[4]   MODEL ROBUST, LINEAR-OPTIMAL DESIGNS [J].
COOK, RD ;
NACHTSHEIM, CJ .
TECHNOMETRICS, 1982, 24 (01) :49-54
[5]   A GENERALIZATION OF D-OPTIMAL AND D1-OPTIMAL DESIGNS IN POLYNOMIAL REGRESSION [J].
DETTE, H .
ANNALS OF STATISTICS, 1990, 18 (04) :1784-1804
[6]  
Fedorov V. V., 1980, Mathematische Operationsforschung und Statistik, Series Statistics, V11, P403, DOI 10.1080/02331888008801549
[7]  
Fedorov VV., 1972, THEORY OPTIMAL EXPT
[8]   A JOINT DESIGN CRITERION FOR DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTIMATION [J].
HILL, WJ ;
HUNTER, WG ;
WICHERN, DW .
TECHNOMETRICS, 1968, 10 (01) :145-+
[9]   GENERAL EQUIVALENCE THEORY FOR OPTIMUM DESIGNS (APPROXIMATE THEORY) [J].
KIEFER, J .
ANNALS OF STATISTICS, 1974, 2 (05) :849-879
[10]  
Lauter E., 1976, Mathematische Operationsforschung und Statistik, V7, P51, DOI 10.1080/02331887608801276