A SCHUR ANALYSIS APPROACH TO MINIMUM DISTANCE PROBLEMS

被引:1
作者
APITZSCH, W
FRITZSCHE, B
KIRSTEIN, B
机构
[1] Sektion Mathematik Karl-Marx-Universität Leipzig Karl-Marx-Platz
关键词
D O I
10.1016/0024-3795(90)90312-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some minimum distance problems in Hilbert space are to be transformed into associated matrix optimization problems, which is their turn are studied using Schur parametrization of nonnegative Hermitian block matrices. This enables a clear geometrical insight into the structure of the feasible region and a complete description of the set of all solutions. © 1990.
引用
收藏
页码:105 / 122
页数:18
相关论文
共 16 条
[1]  
ANDERSON TW, 1978, LINEAR MULTILINEAR A, V6, P257
[2]   SCHUR ANALYSIS OF SOME COMPLETION PROBLEMS [J].
ARSENE, G ;
CEAUSESCU, Z ;
CONSTANTINESCU, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 109 :1-35
[3]   THE MAXIMUM DISTANCE PROBLEM AND BAND SEQUENCES [J].
BENARTZI, A ;
ELLIS, RL ;
GOHBERG, I ;
LAY, DC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 87 :93-112
[4]  
CONSTANTINESCU T, 1986, I SCHUR METHODS OPER, P191
[5]   THE FRECHET DISTANCE BETWEEN MULTIVARIATE NORMAL-DISTRIBUTIONS [J].
DOWSON, DC ;
LANDAU, BV .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :450-455
[6]  
ELLIS RL, 1986, OPERATOR THEORY SYST, P195
[8]  
Fritzsche B., 1989, Optimization, V20, P177, DOI 10.1080/02331938908843430
[9]  
FRITZSCHE B, IN PRESS STATISTICS
[10]  
KOLMOGOROV AN, 1941, B MATH U MOSCOW 6, V2