FUNCTIONAL-INTEGRAL APPROACH TO PARISI-WU STOCHASTIC QUANTIZATION - ABELIAN GAUGE-THEORY

被引:13
作者
GOZZI, E
机构
来源
PHYSICAL REVIEW D | 1985年 / 31卷 / 06期
关键词
D O I
10.1103/PhysRevD.31.1349
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:1349 / 1353
页数:5
相关论文
共 13 条
[1]   A NEW STRONG-COUPLING EXPANSION FOR QUANTUM-FIELD THEORY BASED ON THE LANGEVIN EQUATION [J].
BENDER, CM ;
COOPER, F ;
FREEDMAN, B .
NUCLEAR PHYSICS B, 1983, 219 (01) :61-80
[2]   GIBBS AVERAGE IN THE FUNCTIONAL FORMULATION OF QUANTUM FIELD-THEORY [J].
DEALFARO, V ;
FUBINI, S ;
FURLAN, G .
PHYSICS LETTERS B, 1981, 105 (06) :462-466
[3]  
FADDEEV LD, 1970, THEOR MATH PHYS, V1, P1
[4]  
FLORATOS EG, 1982, NUCL PHYS B, V214, P392
[6]  
KLAUDER JR, 1983, ACTA PHYS AUSTRIAC S, V25
[7]  
LEE BW, 1976, METHODS FIELD THEORY
[8]   A COMMENT ON THE STOCHASTIC QUANTIZATION - THE LOOP EQUATION OF GAUGE-THEORY AS THE EQUILIBRIUM CONDITION [J].
MARCHESINI, G .
NUCLEAR PHYSICS B, 1981, 191 (01) :214-216
[9]   STOCHASTIC QUANTIZATION OF NON-ABELIAN GAUGE FIELD - UNITARITY PROBLEM AND FADDEEV-POPOV GHOST EFFECTS [J].
NAMIKI, M ;
OHBA, I ;
OKANO, K ;
YAMANAKA, Y .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (05) :1580-1599
[10]  
PARISI G, 1981, SCI SINICA, V24, P484