DISCRETE FLOW NETWORKS - BOTTLENECK ANALYSIS AND FLUID APPROXIMATIONS

被引:133
作者
CHEN, H
MANDELBAUM, A
机构
[1] NEW JERSEY INST TECHNOL,NEWARK,NJ 07102
[2] STANFORD UNIV,STANFORD,CA 94305
[3] TECHNION ISRAEL INST TECHNOL,HAIFA,ISRAEL
关键词
FLOW NETWORKS; BOTTLENECKS; FLUID APPROXIMATIONS; SAMPLE PATH ANALYSIS; QUEUING NETWORKS; HEAVY TRAFFIC; OBLIQUE REFLECTION;
D O I
10.1287/moor.16.2.408
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We conduct bottleneck analysis of a deterministic dynamic discrete-flow network. The analysis presupposes only the existence of long-run averages, and is based on a continuous fluid approximation to the network in terms of these averages. The results provide functional strong laws-of-large-numbers for stochastic Jackson queueing networks since they apply to their sample paths with probability one.
引用
收藏
页码:408 / 446
页数:39
相关论文
共 38 条
[1]  
Berman A, 1979, MATH SCI CLASSICS AP, V9, DOI DOI 10.1137/1.9781611971262
[2]  
CHEN H, 1989, IN PRESS ANN PROBAB
[3]  
CHEN H, 1989, IN PRESS P IMPERIAL
[4]  
COSTANTINI C, 1987, THESIS U WISCONSIN
[5]   HIGHWAY DELAYS RESULTING FROM FLOW-STOPPING INCIDENTS [J].
GAVER, DP .
JOURNAL OF APPLIED PROBABILITY, 1969, 6 (01) :137-&
[6]  
Glynn PW, 1986, QUEUEING SYST, V2, P191, DOI [10.1007/BF01536188, DOI 10.1007/BF01536188]
[7]  
GLYNN PW, 1987, IN PRESS MATH OPER R
[8]   THE NON-ERGODIC JACKSON NETWORK [J].
GOODMAN, JB ;
MASSEY, WA .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (04) :860-869
[9]   CLOSED QUEUING SYSTEMS WITH EXPONENTIAL SERVERS [J].
GORDON, WJ ;
NEWELL, GF .
OPERATIONS RESEARCH, 1967, 15 (02) :254-&
[10]  
Harrison J. M., 1990, Stochastics and Stochastics Reports, V29, P37, DOI 10.1080/17442509008833607