STATISTICAL PROPERTIES OF SPECTRA OF PSEUDOINTEGRABLE SYSTEMS

被引:35
作者
SHUDO, A
SHIMIZU, Y
SEBA, P
STEIN, J
STOCKMANN, HJ
ZYCZKOWSKI, K
机构
[1] ACAD SCI CZECH REPUBL, INST NUCL PHYS, PRAGUE, CZECH REPUBLIC
[2] UNIWERSYETET JAGIELLONSKI, INST FIZ, PL-30059 KRAKOW, POLAND
[3] TOKYO INST TECHNOL, DEPT APPL PHYS, MEGURO KU, TOKYO 152, JAPAN
[4] UNIV MARBURG, FACHBEREICH PHYS, D-35032 MARBURG, GERMANY
关键词
D O I
10.1103/PhysRevE.49.3748
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the spectral properties of various quantum pseudointegrable billiards (rhombus, gnomon, deltoid) and link them to the genus of the invariant surface of the corresponding classical model. Numerical investigations of the quantum billiards are completed by an experimental study of microwave resonators. Absorption spectra of microwaves in ''L-shaped'' resonators are measured and the distributions of eigenfrequencies are investigated.
引用
收藏
页码:3748 / 3756
页数:9
相关论文
共 66 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]  
Aurell E., 1988, Journal of Geometry and Physics, V5, P191, DOI 10.1016/0393-0440(88)90004-6
[3]   NOVEL RULE FOR QUANTIZING CHAOS [J].
AURICH, R ;
MATTHIES, C ;
SIEBER, M ;
STEINER, F .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1629-1632
[4]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .2. ELECTROMAGNETIC FIELD - RIEMANNIAN SPACES [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1971, 64 (01) :271-&
[5]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .1. 3-DIMENSIONAL PROBLEM WITH SMOOTH BOUNDARY SURFACE [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1970, 60 (02) :401-&
[6]   SOLUTION OF SCHRODINGER EQUATION IN TERMS OF CLASSICAL PATHS [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1974, 85 (02) :514-545
[7]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE-EQUATION IN A FINITE DOMAIN .3. EIGENFREQUENCY DENSITY OSCILLATIONS [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1972, 69 (01) :76-&
[8]  
Baltes H. P., 1978, SPECTRA FINITE SYSTE
[9]   A RULE FOR QUANTIZING CHAOS [J].
BERRY, MV ;
KEATING, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4839-4849
[10]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421